Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Kidney Int ; 101(2): 299-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774561

RESUMO

Kidney fibrosis is considered the final convergent pathway for progressive chronic kidney diseases, but there is still a paucity of success in clinical application for effective therapy. We recently demonstrated that the expression of secreted leucine-rich α-2 glycoprotein-1 (LRG1) is associated with worsened kidney outcomes in patients with type 2 diabetes and that LRG1 enhances endothelial transforming growth factor-ß signaling to promote diabetic kidney disease progression. While the increased expression of LRG1 was most prominent in the glomerular endothelial cells in diabetic kidneys, its increase was also observed in the tubulointerstitial compartment. Here, we explored the potential role of LRG1 in kidney epithelial cells and TGF-ß-mediated tubulointerstitial fibrosis independent of diabetes. LRG1 expression was induced by tumor necrosis factor-α in cultured kidney epithelial cells and potentiated TGF-ß/Smad3 signal transduction. Global Lrg1 loss in mice led to marked attenuation of tubulointerstitial fibrosis in models of unilateral ureteral obstruction and aristolochic acid fibrosis associated with concomitant decreases in Smad3 phosphorylation in tubule epithelial cells. In mice with kidney epithelial cell-specific LRG1 overexpression, while no significant phenotypes were observed at baseline, marked exacerbation of tubulointerstitial fibrosis was observed in the obstructed kidneys. This was associated with enhanced Smad3 phosphorylation in both kidney epithelial cells and α-smooth muscle actin-positive interstitial cells. Co-culture of kidney epithelial cells with primary kidney fibroblasts confirmed the potentiation of TGF-ß-mediated Smad3 activation in kidney fibroblasts through epithelial-derived LRG1. Thus, our results indicate that enhanced LRG1 expression-induced epithelial injury is an amplifier of TGF-ß signaling in autocrine and paracrine manners promoting tubulointerstitial fibrosis. Hence, therapeutic targeting of LRG1 may be an effective means to curtail kidney fibrosis progression in chronic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Obstrução Ureteral , Animais , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/patologia , Fibrose , Glicoproteínas/metabolismo , Humanos , Rim/patologia , Leucina/metabolismo , Camundongos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Obstrução Ureteral/metabolismo
2.
Kidney Int ; 99(4): 914-925, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33359498

RESUMO

With the widespread use combination antiretroviral therapy, there has been a dramatic decrease in HIV-associated nephropathy. However, although the patients living with HIV have low or undetectable viral load, the prevalence of chronic kidney disease (CKD) in this population remains high. Additionally, improved survival is associated with aging-related comorbidities such as diabetes and cardiovascular disease. A faster progression of CKD is associated with concurrent HIV infection and diabetes than with HIV infection or diabetes alone. To explore the potential pathogenic mechanisms that synergistically drive CKD progression by diabetes and HIV infection, we generated a new mouse model with a relatively low expression of HIV-1 proviral genes specifically in podocytes (pod-HIV mice) to better mimic the setting of kidney injury in patients living with HIV. While no apparent kidney phenotypes were observed at baseline in pod-HIV mice, the induction of mild diabetic kidney disease with streptozotocin led to significant worsening of albuminuria, glomerular injury, podocyte loss, and kidney dysfunction as compared to the mice with diabetes alone. Mechanistically, diabetes and HIV-1 synergistically increased the glomerular expression of microRNA-34a (miR-34a), thereby reducing the expression of Sirtuin-1 (SIRT1) deacetylase. These changes were also associated with increased acetylation and activation of p53 and p65 NF-κB and with enhanced expression of senescence and inflammatory markers. The treatment of diabetic pod-HIV mice with the specific Sirtuin-1 agonist BF175 significantly attenuated albuminuria and glomerulopathy. Thus, our study highlights the reduction in Sirtuin-1 as a major basis of CKD progression in diabetic patients living with HIV and suggests Sirtuin-1 agonists as a potential therapy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Infecções por HIV , Podócitos , Albuminúria/genética , Animais , Nefropatias Diabéticas/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Glomérulos Renais , Camundongos
3.
Am J Physiol Renal Physiol ; 319(2): F335-F344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657157

RESUMO

Human immunodeficiency virus (HIV) infection of kidney cells can lead to HIV-associated nephropathy (HIVAN) and aggravate the progression of other chronic kidney diseases. Thus, a better understanding of the mechanisms of HIV-induced kidney cell injury is needed for effective therapy against HIV-induced kidney disease progression. We have previously shown that the acetylation and activation of key inflammatory regulators, NF-κB p65 and STAT3, were increased in HIVAN kidneys. Here, we demonstrate the key role of sirtuin 1 (SIRT1) deacetylase in the regulation of NF-κB and STAT3 activity in HIVAN. We found that SIRT1 expression was reduced in the glomeruli of human and mouse HIVAN kidneys and that HIV-1 gene expression was associated with reduced SIRT1 expression and increased acetylation of NF-κB p65 and STAT3 in cultured podocytes. Interestingly, SIRT1 overexpression, in turn, reduced the expression of negative regulatory factor in podocytes stably expressing HIV-1 proviral genes, which was associated with inactivation of NF-κB p65 and a reduction in HIV-1 long terminal repeat promoter activity. In vivo, the administration of the small-molecule SIRT1 agonist BF175 or inducible overexpression of SIRT1 specifically in podocytes markedly attenuated albuminuria, kidney lesions, and expression of inflammatory markers in Tg26 mice. Finally, we showed that the reduction in SIRT1 expression by HIV-1 is in part mediated through miR-34a expression. Together, our data provide a new mechanism of SIRT1 regulation and its downstream effects in HIV-1-infected kidney cells and indicate that SIRT1/miR-34a are potential drug targets to treat HIV-related kidney disease.


Assuntos
Nefropatia Associada a AIDS/virologia , Insuficiência Renal Crônica/metabolismo , Sirtuína 1/metabolismo , Nefropatia Associada a AIDS/complicações , Nefropatia Associada a AIDS/metabolismo , Animais , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/virologia , Camundongos , Podócitos/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/virologia , Fator de Transcrição RelA/metabolismo
4.
J Am Soc Nephrol ; 30(4): 546-562, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858225

RESUMO

BACKGROUND: Glomerular endothelial dysfunction and neoangiogenesis have long been implicated in the pathogenesis of diabetic kidney disease (DKD). However, the specific molecular pathways contributing to these processes in the early stages of DKD are not well understood. Our recent transcriptomic profiling of glomerular endothelial cells identified a number of proangiogenic genes that were upregulated in diabetic mice, including leucine-rich α-2-glycoprotein 1 (LRG1). LRG1 was previously shown to promote neovascularization in mouse models of ocular disease by potentiating endothelial TGF-ß/activin receptor-like kinase 1 (ALK1) signaling. However, LRG1's role in the kidney, particularly in the setting of DKD, has been unclear. METHODS: We analyzed expression of LRG1 mRNA in glomeruli of diabetic kidneys and assessed its localization by RNA in situ hybridization. We examined the effects of genetic ablation of Lrg1 on DKD progression in unilaterally nephrectomized, streptozotocin-induced diabetic mice at 12 and 20 weeks after diabetes induction. We also assessed whether plasma LRG1 was associated with renal outcome in patients with type 2 diabetes. RESULTS: LRG1 localized predominantly to glomerular endothelial cells, and its expression was elevated in the diabetic kidneys. LRG1 ablation markedly attenuated diabetes-induced glomerular angiogenesis, podocyte loss, and the development of diabetic glomerulopathy. These improvements were associated with reduced ALK1-Smad1/5/8 activation in glomeruli of diabetic mice. Moreover, increased plasma LRG1 was associated with worse renal outcome in patients with type 2 diabetes. CONCLUSIONS: These findings identify LRG1 as a potential novel pathogenic mediator of diabetic glomerular neoangiogenesis and a risk factor in DKD progression.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glicoproteínas/sangue , Glicoproteínas/genética , Glomérulos Renais/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Células Endoteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Taxa de Filtração Glomerular , Glicoproteínas/metabolismo , Humanos , Falência Renal Crônica/etiologia , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/patologia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Podócitos , Transdução de Sinais/genética , Proteínas Smad/metabolismo
5.
J Am Soc Nephrol ; 29(10): 2529-2545, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143559

RESUMO

BACKGROUND: Podocyte injury is the hallmark of proteinuric kidney diseases, such as FSGS and minimal change disease, and destabilization of the podocyte's actin cytoskeleton contributes to podocyte dysfunction in many of these conditions. Although agents, such as glucocorticoids and cyclosporin, stabilize the actin cytoskeleton, systemic toxicity hinders chronic use. We previously showed that loss of the kidney-enriched zinc finger transcription factor Krüppel-like factor 15 (KLF15) increases susceptibility to proteinuric kidney disease and attenuates the salutary effects of retinoic acid and glucocorticoids in the podocyte. METHODS: We induced podocyte-specific KLF15 in two proteinuric murine models, HIV-1 transgenic (Tg26) mice and adriamycin (ADR)-induced nephropathy, and used RNA sequencing of isolated glomeruli and subsequent enrichment analysis to investigate pathways mediated by podocyte-specific KLF15 in Tg26 mice. We also explored in cultured human podocytes the potential mediating role of Wilms Tumor 1 (WT1), a transcription factor critical for podocyte differentiation. RESULTS: In Tg26 mice, inducing podocyte-specific KLF15 attenuated podocyte injury, glomerulosclerosis, tubulointerstitial fibrosis, and inflammation, while improving renal function and overall survival; it also attenuated podocyte injury in ADR-treated mice. Enrichment analysis of RNA sequencing from the Tg26 mouse model shows that KLF15 induction activates pathways involved in stabilization of actin cytoskeleton, focal adhesion, and podocyte differentiation. Transcription factor enrichment analysis, with further experimental validation, suggests that KLF15 activity is in part mediated by WT1. CONCLUSIONS: Inducing podocyte-specific KLF15 attenuates kidney injury by directly and indirectly upregulating genes critical for podocyte differentiation, suggesting that KLF15 induction might be a potential strategy for treating proteinuric kidney disease.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Nefropatias/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Fatores de Transcrição/biossíntese , Citoesqueleto de Actina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Adesões Focais , Técnicas de Silenciamento de Genes , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Nefropatias/genética , Nefropatias/patologia , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Nefrose Lipoide/genética , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Fatores de Transcrição/genética , Regulação para Cima , Proteínas WT1/antagonistas & inibidores , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
J Am Soc Nephrol ; 29(5): 1397-1410, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29511111

RESUMO

Background Diabetic nephropathy (DN) is a leading cause of ESRD in the United States, but the molecular mechanisms mediating the early stages of DN are unclear.Methods To assess global changes that occur in early diabetic kidneys and to identify proteins potentially involved in pathogenic pathways in DN progression, we performed proteomic analysis of diabetic and nondiabetic rat glomeruli. Protein S (PS) among the highly upregulated proteins in the diabetic glomeruli. PS exerts multiple biologic effects through the Tyro3, Axl, and Mer (TAM) receptors. Because increased activation of Axl by the PS homolog Gas6 has been implicated in DN progression, we further examined the role of PS in DN.Results In human kidneys, glomerular PS expression was elevated in early DN but suppressed in advanced DN. However, plasma PS concentrations did not differ between patients with DN and healthy controls. A prominent increase of PS expression also colocalized with the expression of podocyte markers in early diabetic kidneys. In cultured podocytes, high-glucose treatment elevated PS expression, and PS knockdown further enhanced the high-glucose-induced apoptosis. Conversely, PS overexpression in cultured podocytes dampened the high-glucose- and TNF-α-induced expression of proinflammatory mediators. Tyro3 receptor was upregulated in response to high glucose and mediated the anti-inflammatory response of PS. Podocyte-specific PS loss resulted in accelerated DN in streptozotocin-induced diabetic mice, whereas the transient induction of PS expression in glomerular cells in vivo attenuated albuminuria and podocyte loss in diabetic OVE26 mice.Conclusions Our results support a protective role of PS against glomerular injury in DN progression.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Podócitos/metabolismo , Podócitos/patologia , Proteína S/metabolismo , Albuminúria/genética , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/sangue , Inativação Gênica , Glucose/farmacologia , Humanos , Camundongos , NF-kappa B/metabolismo , Proteína S/genética , Proteômica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase Axl
7.
Kidney Int ; 93(6): 1330-1343, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477240

RESUMO

Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Podócitos/enzimologia , Sirtuína 1/biossíntese , Albuminúria/enzimologia , Albuminúria/genética , Albuminúria/prevenção & controle , Animais , Glicemia/metabolismo , Ácidos Borônicos/farmacologia , Linhagem Celular , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Indução Enzimática , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Transdução de Sinais , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Estilbenos/farmacologia
8.
Kidney Int ; 94(6): 1160-1176, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366682

RESUMO

Mounting evidence suggests that epigenetic modification is important in kidney disease pathogenesis. To determine whether epigenetic regulation is involved in HIV-induced kidney injury, we performed genome-wide methylation profiling and transcriptomic profiling of human primary podocytes infected with HIV-1. Comparison of DNA methylation and RNA sequencing profiles identified several genes that were hypomethylated with corresponding upregulated RNA expression in HIV-infected podocytes. Notably, we found only one hypermethylated gene with corresponding downregulated RNA expression, namely regulator of calcineurin 1 (RCAN1). Further, we found that RCAN1 RNA expression was suppressed in glomeruli in human diabetic nephropathy, IgA nephropathy, and lupus nephritis, and in mouse models of HIV-associated nephropathy and diabetic nephropathy. We confirmed that HIV infection or high glucose conditions suppressed RCAN1 expression in cultured podocytes. This suppression was alleviated upon pretreatment with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine, suggesting that RCAN1 expression is epigenetically suppressed in the context of HIV infection and diabetic conditions. Mechanistically, increased expression of RCAN1 decreased HIV- or high glucose-induced nuclear factor of activated T cells (NFAT) transcriptional activity. Increased RCAN1 expression also stabilized actin cytoskeleton organization, consistent with the inhibition of the calcineurin pathway. In vivo, knockout of RCAN1 aggravated albuminuria and podocyte injury in mice with Adriamycin-induced nephropathy. Our findings suggest that epigenetic suppression of RCAN1 aggravates podocyte injury in the setting of HIV infection and diabetic nephropathy.


Assuntos
Nefropatia Associada a AIDS/patologia , Nefropatias Diabéticas/patologia , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Podócitos/patologia , Nefropatia Associada a AIDS/virologia , Animais , Biópsia , Proteínas de Ligação ao Cálcio , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Proteínas de Ligação a DNA , Conjuntos de Dados como Assunto , Decitabina/farmacologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Genoma Humano/genética , Glucose/metabolismo , HIV-1 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Podócitos/virologia , Cultura Primária de Células , Regulação para Cima
9.
J Am Soc Nephrol ; 28(7): 2133-2143, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28220029

RESUMO

Homeodomain interacting protein kinase 2 (HIPK2) is a critical regulator of multiple profibrotic pathways, including that of TGF-ß1/Smad3. Genetic ablation of HIPK2 was shown previously to significantly reduce renal fibrosis in the experimental unilateral ureteral obstruction model and Tg26 mice, a model of HIV-associated nephropathy. To develop specific pharmacologic inhibitors of HIPK2 for antifibrotic therapy, we designed and synthesized small molecule inhibitor compounds on the basis of the predicted structure of HIPK2. Among these compounds, we identified one, BT173, that strongly inhibited the ability of HIPK2 to potentiate the downstream transcriptional activity of Smad3 in kidney tubular cells. Notably, binding of BT173 to HIPK2 did not inhibit HIPK2 kinase activity but rather, interfered allosterically with the ability of HIPK2 to associate with Smad3. In vitro, treatment with BT173 inhibited TGF-ß1-induced Smad3 phosphorylation and Smad3 target gene expression in human renal tubular epithelial cells. In vivo, administration of BT173 decreased Smad3 phosphorylation and mitigated renal fibrosis and deposition of extracellular matrix in unilateral ureteral obstruction and Tg26 mouse models of renal fibrosis. Our data indicate that BT173 is a novel HIPK2 inhibitor that attenuates renal fibrosis through suppression of the TGF-ß1/Smad3 pathway and may be developed as an antifibrotic therapy in patients with kidney disease.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Rim/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/antagonistas & inibidores , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Fibrose/prevenção & controle , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Fator de Crescimento Transformador beta1/fisiologia
10.
Kidney Int ; 87(2): 382-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25185079

RESUMO

Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, has endoprotective effects. In streptozotocin-induced diabetic rats, we found that glomerular Klf2 expression was reduced in comparison with nondiabetic rats. However, normalization of hyperglycemia by insulin treatment increased Klf2 expression to a level higher than that of nondiabetic rats. Consistent with this, we found that Klf2 expression was suppressed by high glucose but increased by insulin in cultured endothelial cells. To determine the role of KLF2 in streptozotocin-induced diabetic nephropathy, we used endothelial cell-specific Klf2 heterozygous knockout mice and found that diabetic knockout mice developed more kidney/glomerular hypertrophy and proteinuria than diabetic wild-type mice. Glomerular expression of Vegfa, Flk1, and angiopoietin 2 increased, but expression of Flt1, Tie2, and angiopoietin 1 decreased, in diabetic knockout mice compared with diabetic wild-type mice. Glomerular expression of ZO-1, glycocalyx, and eNOS was also decreased in diabetic knockout compared with diabetic wild-type mice. These data suggest knockdown of Klf2 expression in the endothelial cells induced more endothelial cell injury. Interestingly, podocyte injury was also more prominent in diabetic knockout compared with diabetic wild-type mice, indicating a cross talk between these two cell types. Thus, KLF2 may play a role in glomerular endothelial cell injury in early diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/etiologia , Fatores de Transcrição Kruppel-Like/deficiência , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Insulina/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
11.
JCI Insight ; 9(8)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512421

RESUMO

HIPK2 is a multifunctional kinase that acts as a key pathogenic mediator of chronic kidney disease and fibrosis. It acts as a central effector of multiple signaling pathways implicated in kidney injury, such as TGF-ß/Smad3-mediated extracellular matrix accumulation, NF-κB-mediated inflammation, and p53-mediated apoptosis. Thus, a better understanding of the specific HIPK2 regions necessary for distinct downstream pathway activation is critical for optimal drug development for CKD. Our study now shows that caspase-6-mediated removal of the C-terminal region of HIPK2 (HIPK2-CT) lead to hyperactive p65 NF-κB transcriptional response in kidney cells. In contrast, the expression of cleaved HIPK2-CT fragment could restrain the NF-κB transcriptional activity by cytoplasmic sequestration of p65 and the attenuation of IκBα degradation. Therefore, we examined whether HIPK2-CT expression can be exploited to restrain renal inflammation in vivo. The induction of HIPK2-CT overexpression in kidney tubular cells attenuated p65 nuclear translocation, expression of inflammatory cytokines, and macrophage infiltration in the kidneys of mice with unilateral ureteral obstruction and LPS-induced acute kidney injury. Collectively, our findings indicate that the HIPK2-CT is involved in the regulation of nuclear NF-κB transcriptional activity and that HIPK2-CT or its analogs could be further exploited as potential antiinflammatory agents to treat kidney disease.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NF-kappa B/metabolismo , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Inflamação/metabolismo , Inflamação/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Masculino , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças , Fator de Transcrição RelA/metabolismo
12.
Cell Cycle ; 23(2): 131-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38341861

RESUMO

Colorectal cancer (CRC) ranks among the most prevalent global malignancies, posing significant threats to human life and health due to its high recurrence and metastatic potential. Small extracellular vesicles (sEVs) released by CRC play a pivotal role in the formation of the pre-metastatic niche (PMN) through various mechanisms, preparing the groundwork for accelerated metastatic invasion. This review systematically describes how sEVs promote CRC metastasis by upregulating inflammatory factors, promoting immunosuppression, enhancing angiogenesis and vascular permeability, promoting lymphangiogenesis and lymphatic network remodeling, determining organophilicity, promoting stromal cell activation and remodeling and inducing the epithelial-to-mesenchymal transition (EMT). Furthermore, we explore potential mechanisms by which sEVs contribute to PMN formation in CRC and propose novel insights for CRC diagnosis, treatment, and prognosis.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Animais , Metástase Neoplásica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Linfangiogênese
13.
Front Mol Neurosci ; 16: 1090556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818649

RESUMO

Small extracellular vesicles (sEVs) are generated by all types of cells during physiological or pathological conditions. There is growing interest in tissue-derived small extracellular vesicles (tdsEVs) because they can be isolated from a single tissue source. Knowing the representation profile of microRNA (miRNA) in midbrain tissue-derived sEVs (bdsEVs) and their roles is imperative for understanding the pathological mechanism and improving the diagnosis and treatment of Parkinson's disease (PD). bdsEVs from a rat model of PD and a sham group were separated and purified using ultracentrifugation, size-exclusion chromatography (SEC), and ultrafiltration. Then, miRNA profiling of bdsEVs in both groups was performed using next-generation sequencing (NGS). The expression levels of 180 miRNAs exhibited significant differences between the two groups, including 114 upregulated and 66 downregulated genes in bdsEVs of PD rats compared with the sham group (p < 0.05). Targets of the differentially expressed miRNAs were predicted by miRanda and RNAhybrid, and their involvement in the signaling pathways and cellular function has been analyzed through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO). Furthermore, we explored the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p in bdsEVs, sEVs derived from plasma, and plasma of both groups of rats. Interestingly, the expression levels of miR-103-3p, miR-107-3p, miR-219a-2-3p, and miR-379-5p were elevated in bdsEVs and sEVs from plasma; in contrast, their expression levels were decreased in plasma of the rat model of PD. In summary, miRNAs may play a significant role in the onset and development of PD, and miRNAs need to be selected carefully as a research subject for exploring the pathological mechanism and the potential therapeutic targets and diagnostic markers of PD.

14.
J Vis Exp ; (192)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806033

RESUMO

Small extracellular vesicles (sEVs) derived from tissue can reflect the functional status of the source cells and the characteristics of the tissue's interstitial space. The efficient enrichment of these sEVs is an important prerequisite to the study of their biological function and a key to the development of clinical detection techniques and therapeutic carrier technology. It is difficult to isolate sEVs from tissue because they are usually heavily contaminated. This study provides a method for the rapid enrichment of high-quality sEVs from liver cancer tissue. The method involves a four-step process: the incubation of digestive enzymes (collagenase D and DNase Ι) with tissue, filtration through a 70 µm cell strainer, differential ultracentrifugation, and filtration through a 0.22 µm membrane filter. Owing to the optimization of the differential ultracentrifugation step and the addition of a filtration step, the purity of the sEVs obtained by this method is higher than that achieved by classic differential ultracentrifugation. It provides an important methodology and supporting data for the study of tissue-derived sEVs.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Desoxirribonuclease I , Desoxirribonucleases
15.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36454644

RESUMO

Podocyte injury and loss are key drivers of primary and secondary glomerular diseases, such as focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). We previously demonstrated the renoprotective role of protein S (PS) and its cognate tyrosine-protein kinase receptor, TYRO3, in models of FSGS and DKD and that their signaling exerts antiapoptotic and antiinflammatory effects to confer protection against podocyte loss. Among the 3 TAM receptors (TYRO3, AXL, and MER), only TYRO3 expression is largely restricted to podocytes, and glomerular TYRO3 mRNA expression negatively correlates with human glomerular disease progression. Therefore, we posited that the agonistic PS/TYRO3 signaling could serve as a potential therapeutic approach to attenuate glomerular disease progression. As PS function is not limited to TYRO3-mediated signal transduction but includes its anticoagulant activity, we focused on the development of TYRO3 agonists as an optimal therapeutic approach to glomerular disease. Among the small-molecule TYRO3 agonistic compounds screened, compound 10 (C-10) showed a selective activation of TYRO3 without any effects on AXL or MER. We also confirmed that C-10 directly binds to TYRO3, but not the other receptors. In vivo, C-10 attenuated proteinuria, glomerular injury, and podocyte loss in mouse models of Adriamycin-induced nephropathy and a db/db model of type 2 diabetes. Moreover, these renoprotective effects of C-10 were lost in Tyro3-knockout mice, indicating that C-10 is a selective agonist of TYRO3 activity that mitigates podocyte injury and glomerular disease. Therefore, C-10, a TYRO3 agonist, could be potentially developed as a new therapy for glomerular disease.


Assuntos
Diabetes Mellitus Tipo 2 , Glomerulosclerose Segmentar e Focal , Podócitos , Camundongos , Animais , Humanos , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Camundongos Knockout , Proteínas de Transporte/metabolismo , Progressão da Doença , Receptores Proteína Tirosina Quinases/metabolismo
16.
Transl Neurodegener ; 12(1): 43, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697342

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, affect millions of people worldwide. Tremendous efforts have been put into disease-related research, but few breakthroughs have been made in diagnostic and therapeutic approaches. Extracellular vesicles (EVs) are heterogeneous cell-derived membrane structures that arise from the endosomal system or are directly separated from the plasma membrane. EVs contain many biomolecules, including proteins, nucleic acids, and lipids, which can be transferred between different cells, tissues, or organs, thereby regulating cross-organ communication between cells during normal and pathological processes. Recently, EVs have been shown to participate in various aspects of neurodegenerative diseases. Abnormal secretion and levels of EVs are closely related to the pathogenesis of neurodegenerative diseases and contribute to disease progression. Numerous studies have proposed EVs as therapeutic targets or biomarkers for neurodegenerative diseases. In this review, we summarize and discuss the advanced research progress on EVs in the pathological processes of several neurodegenerative diseases. Moreover, we outline the latest research on the roles of EVs in neurodegenerative diseases and their therapeutic potential for the diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Vesículas Extracelulares , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia
17.
Nat Commun ; 14(1): 4297, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463911

RESUMO

Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.


Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Humanos , Camundongos , Autofagia , Fibrose , Inflamação/patologia , Rim/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Insuficiência Renal Crônica/patologia , Obstrução Ureteral/metabolismo
18.
medRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37732187

RESUMO

Kidney disease affects 50% of all diabetic patients; however, prediction of disease progression has been challenging due to inherent disease heterogeneity. We use deep learning to identify novel genetic signatures prognostically associated with outcomes. Using autoencoders and unsupervised clustering of electronic health record data on 1,372 diabetic kidney disease patients, we establish two clusters with differential prevalence of end-stage kidney disease. Exome-wide associations identify a novel variant in ARHGEF18, a Rho guanine exchange factor specifically expressed in glomeruli. Overexpression of ARHGEF18 in human podocytes leads to impairments in focal adhesion architecture, cytoskeletal dynamics, cellular motility, and RhoA/Rac1 activation. Mutant GEF18 is resistant to ubiquitin mediated degradation leading to pathologically increased protein levels. Our findings uncover the first known disease-causing genetic variant that affects protein stability of a cytoskeletal regulator through impaired degradation, a potentially novel class of expression quantitative trait loci that can be therapeutically targeted.

19.
Front Oncol ; 12: 980404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185265

RESUMO

Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients' survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.

20.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552835

RESUMO

Colorectal cancer (CRC) is a malignancy that seriously threatens human health, and metastasis from CRC is a major cause of death and poor prognosis for patients. Studying the potential mechanisms of small extracellular vesicles (sEVs) in tumor development may provide new options for early and effective diagnosis and treatment of CRC metastasis. In this review, we systematically describe how sEVs mediate epithelial mesenchymal transition (EMT), reconfigure the tumor microenvironment (TME), modulate the immune system, and alter vascular permeability and angiogenesis to promote CRC metastasis. We also discuss the current difficulties in studying sEVs and propose new ideas.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Humanos , Neoplasias Colorretais/patologia , Vesículas Extracelulares/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA