Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0285130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141258

RESUMO

Foliar water uptake (FWU) has increasingly been regarded as a common approach for plants to obtain water under water-limited conditions. At present, the research on FWU has mostly focused on short-term experiments; the long-term FWU plant response remains unclear; Methods: Through a field in-situ humidification control experiment, the leaves of Calligonum ebinuricum N. A. Ivanova ex Soskov were humidified, and the changes of leaf water potential, gas exchange parameters and fluorescence physiological parameters of plants after long-term and short-term FWU were discussed; The main results were as follows: (1) After short-term humidification, the water potential of Calligonum ebinuricum decreased, the non-photochemical quenching (NPQ) increased, and the plant produced photoinhibition phenomenon, indicating that short-term FWU could not alleviate drought stress. (2) After long-term humidification, the leaf water potential, chlorophyll fluorescence parameter and net photosynthetic rate (Pn) increased significantly. That is to say, after long-term FWU, the improvement of plant water status promoted the occurrence of light reaction and carbon reaction, and then increased the net photosynthetic rate (Pn); Therefore, long-term FWU is of great significance to alleviate drought stress and promote Calligonum ebinuricum growth. This study will be helpful to deepen our understanding of the drought-tolerant survival mechanism of plants in arid areas.


Assuntos
Fotossíntese , Água , Água/fisiologia , Folhas de Planta/fisiologia , Secas , Fluorescência
2.
Front Plant Sci ; 14: 1242469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780507

RESUMO

Introduction: Continuous monoculture leading to soil nutrient depletion may cause a decline in plantation productivity. Cow dung is typically used as a cheap renewable resource to improve soil nutrient status. In this study, our purpose was to compare the effects of different cow dung return methods (direct return and carbonization return) on soil microbial communities and phosphorus availability in the root zone (rhizosphere soil and non-rhizosphere soil) of P.euphratica seedlings in forest gardens and to explore possible chemical and microbial mechanisms. Methods: Field experiments were conducted. Two-year-old P.euphratica seedlings were planted in the soil together with 7.5 t hm-2 of cow dung and biochar made from the same amount of cow dung. Results: Our findings indicated that the available phosphorus content in soil subjected to biochar treatment was considerably greater than that directly treated with cow dung, leading to an increase in the phosphorus level of both aboveground and underground components of P.euphratica seedlings. The content of Olsen-P in rhizosphere and non-rhizosphere soil increased by 134% and 110%, respectively.This was primarily a result of the direct and indirect impact of biochar on soil characteristics. Biochar increased the biodiversity of rhizosphere and non-rhizosphere soil bacteria compared with the direct return of cow dung. The Shannon diversity index of carbonized cow manure returning to field is 1.11 times and 1.10 times of that of direct cow manure returning to field and control, and the Chao1 diversity index is 1.20 times and 1.15 times of that of direct cow manure returning to field and control.Compared to the direct addition of cow dung, the addition of biochar increased the copy number of the phosphorus functional genes phoC and pqqc in the rhizosphere soil. In the biochar treatment, the abundance of the phosphate-solubilizing bacteria Sphingomonas and Lactobacillus was significantly higher than that in the other treatments, it is relative abundance was 4.83% and 2.62%, respectively, which indirectly improved soil phosphorus availability. Discussion: The results indicated that different cow dung return methods may exert different effects on phosphorus availability in rhizosphere and non-rhizosphere soils via chemical and microbial pathways. These findings indicated that, compared to the direct return of cow dung, biochar return may exert a more significant impact on the availability of phosphorus in both rhizosphere and non-rhizosphere soils, as well as on the growth of P.euphratica seedlings and the microbial community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA