Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Appl Environ Microbiol ; 89(1): e0123622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602342

RESUMO

The ß-1,6-glucan is the key linker between mannoproteins in the outermost part of the cell wall and ß-1,3-glucan/chitin polysaccharide to maintain the rigid structure of the cell wall. The ß-1,6-glucanase GluM, which was purified from the fermentation supernatant of Corallococcus sp. EGB, was able to inhibit the germination of Fusarium oxysporum f. sp. cucumerinum conidia at a minimum concentration of 2.0 U/mL (0.08 µg/mL). The survival rates of GluM-treated conidia and monohyphae were 10.4% and 30.7%, respectively, which were significantly lower than that of ß-1,3-glucanase treatment (Zymolyase, 20.0 U/mL; equate to 1.0 mg/mL) (72.9% and 73.9%). In contrast to ß-1,3-glucanase treatment, the high-osmolarity glycerol (HOG) pathway of F. oxysporum f. sp. cucumerinum cells was activated after GluM treatment, and the intracellular glycerol content was increased by 2.6-fold. Moreover, the accumulation of reactive oxygen species (ROS) in F. oxysporum f. sp. cucumerinum cells after GluM treatment induced apoptosis, but it was not associated with the increased intracellular glycerol content. Together, the results indicate that ß-1,6-glucan is a promising target for the development of novel broad-spectrum antifungal agents. IMPORTANCE Phytopathogenic fungi are the most devastating plant pathogens in agriculture, causing enormous economic losses to global crop production. Biocontrol agents have been promoted as replacements to synthetic chemical pesticides for sustainable agriculture development. Cell wall-degrading enzymes (CWDEs), including chitinases and ß-1,3-glucanases, have been considered as important armaments to damage the cell wall. Here, we found that F. oxysporum f. sp. cucumerinum is more sensitive to ß-1,6-glucanase GluM treatment (0.08 µg/mL) than ß-1,3-glucanase Zymolyase (1.0 mg/mL). The HOG pathway was activated in F. oxysporum f. sp. cucumerinum cells after GluM treatment, and the intracellular glycerol content was significantly increased. Moreover, the decomposition of F. oxysporum f. sp. cucumerinum cell wall by GluM induced the burst of intracellular ROS and apoptosis, which eventually leads to cell death. Therefore, we suggest that the ß-1,6-glucan of the fungal cell wall may be a better antifungal target compared to the ß-1,3-glucan.


Assuntos
Fusarium , Glicerol , Espécies Reativas de Oxigênio/metabolismo , Glicerol/metabolismo , Parede Celular , Antifúngicos/farmacologia , Esporos Fúngicos , Morte Celular , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Protein Expr Purif ; 203: 106199, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36372201

RESUMO

Chitosanases hydrolyze chitosan into chitooligosaccharides (COSs) with various biological activities, which are widely employed in many areas including plant disease management. In this study, the novel chitosanase AqCsn1 belonging to the glycoside hydrolase family 46 (GH46) was cloned from Aquabacterium sp. A7-Y and heterologously expressed in Escherichia coli BL21 (DE3). AqCsn1 displayed the highest hydrolytic activity towards chitosan with 95% degree of deacetylation at 40 °C and pH 5.0, with a specific activity of 13.18 U/mg. Product analysis showed that AqCsn1 hydrolyzed chitosan into (GlcN)2 and (GlcN)3 as the main products, demonstrating an endo-type cleavage pattern. Evaluation of antagonistic activity showed that the hydrolysis products of AqCsn1 suppress the mycelial growth of Magnaporthe oryzae and Phytophthora sojae in a concentration-dependent manner, and the inhibition rate of P. sojae reached 39.82% at a concentration of 8 g/L. Our study demonstrates that AqCsn1 and hydrolysis products with a low degree of polymerization might have potential applications in the biological control of agricultural diseases.


Assuntos
Quitosana , Quitosana/farmacologia , Polimerização , Quitina , Oligossacarídeos/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Hidrólise , Escherichia coli/genética
3.
Protein Expr Purif ; 194: 106074, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218889

RESUMO

A new glycoside hydrolase family 2 (GH2) ß-galactosidase encoding gene galM was cloned from Microvirga sp. strain MC18 and overexpressed in Escherichia coli. The recombinant ß-galactosidase GalM showed optimal activity at pH 7.0 and 50 °C, with a stability at pH 6.0-9.0 and 20-40 °C, which are conditions suitable for the diary environment. The Km and Vmax values for o-nitrophenyl-ß-d-galactopyranoside (oNPG) were 1.30 mmol/L and 15.974 µmol/(min·mg), respectively. GalM showed low product inhibition by galactose with a Ki of 73.18 mM and high tolerance for glucose that 86.5% activity retained in the presence of 500 mM glucose. It was also stable and active in 20% of methanol, ethanol and isopropanol. In addition, the enzyme activity of GalM was activated significantly over 0-2 mol/L NaCl (1.6-4.3 fold). These favorable properties make GalM a potential candidate for the industrial application.


Assuntos
Escherichia coli , Galactose , Methylobacteriaceae/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose , Concentração de Íons de Hidrogênio , Cinética , beta-Galactosidase/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614072

RESUMO

Dipeptidyl peptidase III (DPP III) is a zinc-dependent enzyme that specifically hydrolyzes dipeptides from the N-terminal of different-length peptides, and it is involved in a number of physiological processes. Here, DPP III with an atypical pentapeptide zinc binding motif (HELMH) was identified from Corallococcus sp. EGB. It was shown that the activity of recombined CoDPP III was optimal at 50 °C and pH 7.0 with high thermostability up to 60 °C. Unique to CoDPP III, the crystal structure of the ligand-free enzyme was determined as a dimeric and closed form. The relatively small inter-domain cleft creates a narrower entrance to the substrate binding site and the unfavorable binding of the bulky naphthalene ring. The ectopic expression of CoDPP III in M. xanthus DK1622 resulted in a 12 h head start in fruiting body development compared with the wild type. Additionally, the A-signal prepared from the starving DK1622-CoDPP III rescued the developmental defect of the asgA mutant, and the fruiting bodies were more numerous and closely packed. Our data suggested that CoDPP III played a role in the fruiting body development of myxobacteria through the accumulation of peptides and amino acids to act as the A-signal.


Assuntos
Myxococcales , Myxococcales/genética , Myxococcales/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases , Dipeptídeos/química , Zinco/metabolismo , Dipeptidil Peptidase 4
5.
Protein Expr Purif ; 179: 105798, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232801

RESUMO

A pectinase-producing bacterial isolate, identified as Paenibacillus xylanexedens SZ 29, was screened by using the soil dilution plate with citrus pectin and congo red. A pectin methylesterase gene (Pxpme) was cloned and expressed in Escherichia coli. The gene coded for a protein with 334 amino acids and a calculated molecular mass of 36.76 kDa. PxPME showed the highest identity of 32.4% with the characterized carbohydrate esterase family 8 pectin methylesterase from Daucus carota. The recombined PxPME showed a specific activity with 39.38 U/mg against citrus pectin with >65% methylesterification. The optimal pH and temperature for PxPME activity were 5.0 and 45 °C. Its Km and Vmax value were determined to be 1.43 mg/mL and 71.5 µmol/mg·min, respectively. Moreover, PxPME could increase the firmness of pineapple cubes by 114% when combined with CaCl2. The acidic and mesophilic properties make PxPME a potential candidate for application in the fruit processing.


Assuntos
Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Paenibacillus , Pectinas/metabolismo , Proteínas Recombinantes , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Escherichia coli/genética , Manipulação de Alimentos , Frutas/química , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Paenibacillus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
6.
Protein Expr Purif ; 182: 105846, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592252

RESUMO

Trehalase catalyzes the hydrolysis of trehalose into two glucose molecules and is present in nearly all tissues in various forms. In this study, a putative bacterial trehalase gene, encoding a glycoside hydrolase family 15 (GH15) protein was identified in Microvirga sp. strain MC18 and heterologously expressed in E. coli. The specific activity of the purified recombinant trehalase MtreH was 24 U/mg, with Km and Vmax values of 23.45 mg/mL and 184.23 µmol/mg/min, respectively. The enzyme exhibited optimal activity at 40 °C and pH 7.0, whereby Ca2+ had a considerable positive effects on the catalytic activity and thermostability. The optimized enzymatic reaction conditions for the bioconversion of trehalose using rMtreH were determined as 40 °C, pH 7.0, 10 h and 1% trehalose concentration. The characterization of this bacterial trehalase improves our understanding of the metabolism and biological role of trehalose in prokaryotic organism.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Methylobacteriaceae , Trealase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Methylobacteriaceae/enzimologia , Methylobacteriaceae/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Trealase/biossíntese , Trealase/química , Trealase/genética , Trealase/isolamento & purificação
7.
Protein Expr Purif ; 185: 105898, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33962003

RESUMO

Nutraceuticals containing modified starch with increased content of slowly-digestible starch (SDS) may reduce the prevalence of obesity, diabetes and cardiovascular diseases due to its slow digestion rate. Enzymatic methods for the preparation of modified starch have attracted increasing attention because of their low environmental impact, safety and specificity. In this study, the efficient glucan branching enzyme McGBE from Microvirga sp. MC18 was identified, and its relevant properties as well as its potential for industrial starch modification were evaluated. The purified McGBE exhibited the highest specificity for potato starch, with a maximal specific activity of 791.21 U/mg. A time-dependent increase in the content of α-1,6 linkages from 3.0 to 6.0% was observed in McGBE-modified potato starch. The proportion of shorter chains (degree of polymerization, DP < 13) increased from 29.2 to 63.29% after McGBE treatment, accompanied by a reduction of the medium length chains (DP 13-24) from 52.30 to 35.99% and longer chains (DP > 25) from 18.51 to 0.72%. The reduction of the storage modulus (G') and retrogradation enthalpy (ΔHr) of potato starch with increasing treatment time demonstrated that McGBE could inhibit the short- and long-term retrogradation of starch. Under the optimal conditions, the SDS content of McGBE-modified potato starch increased by 65.8% compared to native potato starch. These results suggest that McGBE has great application potential for the preparation of modified starch with higher SDS content that is resistant to retrogradation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Proteínas de Bactérias/química , Suplementos Nutricionais/análise , Methylobacteriaceae/enzimologia , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Hidrólise , Cinética , Methylobacteriaceae/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
Appl Microbiol Biotechnol ; 105(18): 6793-6803, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477943

RESUMO

Some microbial-associated molecular patterns (MAMPs), like glucan oligosaccharides, can be recognized by pattern recognition receptors (PRRs) of plant to elicit further immunity response. In this study, a novel glycoside hydrolase family 55 ß-1,3-glucanase (AcGluA) from Archangium sp. strain AC19 was cloned and expressed in Escherichia coli. Among the reported ß-1, 3-glucanases from the glycoside hydrolase 55 family, the purified AcGluA exhibited the highest activity on laminarin at pH 6.0 and 60 °C with 112.3 U/mg. Activity of AcGluA was stable in the range of pH 4.0-9.0 and at temperatures below 60 °C. The Km and Vmax of AcGluA for laminarin were 3.5 mg/ml and 263.5 µmol/(ml·min). AcGluA hydrolyzed laminarin into a series of oligosaccharides, suggesting it was an endo-ß-1,3-glucanase. The high dose of oligosaccharides (1600 mg/l) had conspicuous biocontrol efficacy on the defense of rice seedlings to Magnaporthe oryzae, which provided a new idea for the development of green biopesticide.Key points• The AcGluA was determined bacteria-derived ß-1,3-glucanases in the GH55 family.• The AcGluA showed the highest activity towards laminarin among reported GH55 family.• The hydrolysates of laminarin showed conspicuous biocontrol efficacy to M. oryzae.


Assuntos
Ascomicetos , Glicosídeo Hidrolases , Ascomicetos/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Especificidade por Substrato
9.
Food Microbiol ; 91: 103502, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539966

RESUMO

Myxobacteria have excellent biocontrol activity against various phytopathogens due to their rich spectrum of secondary metabolites and active predatory characteristics. In this study, the mycelial growth of Fusarium oxysporum f. sp. cucumerinum (FOC) was found to be significantly inhibited by volatile compounds (VOCs) produced by Corallococcus sp. EGB. A total of 32 compounds were identified among the VOCs produced by strain EGB, of which isooctanol exhibited the highest antifungal activity, with dosages of 3.75 and 4.0 µL/plate being sufficient to suppress FOC and Penicillum digitatum, respectively. Isooctanol was found to damage the cell wall and cell membranes of FOC and P. digitatum. Apoptosis-like cell death of FOC and P. digitatum induced by isooctanol was observed subsequently due to the accumulation of reactive oxygen species (ROS). The transcription level of genes related to cell wall integrity (CWI) pathway and redox reactions were significantly upregulated by 15- to 40-fold, indicating the stress caused by isooctanol. Postharvest storage experiments showed that the disease severity of post-harvest oranges infected with P. digitatum could be significantly reduced by isooctanol at 114.2 µL/L.


Assuntos
Antifúngicos/farmacologia , Myxococcales/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Citrus sinensis/microbiologia , Armazenamento de Alimentos , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Octanóis/metabolismo , Octanóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos Voláteis/metabolismo
10.
Protein Expr Purif ; 164: 105481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470096

RESUMO

The lamC gene encoding a novel ß-(1,3)-glucanase was cloned from Corallococcus sp. EGB and successfully expressed in the industrial yeast Pichia pastoris. The mature protein without the initial 26 residues of signal peptide, designated LamC27, was found to be composed of fascin-like module and laminarinase-like catalytic module. The purified recombinant enzyme (rLamC27) with a calculated molecular mass of 45.3 kDa displays activities toward a broad range of ß-linked polysaccharides, including laminarin, curdlan, pachyman, lichenan, and CMC. Enzymological characterization showed that rLamC27 performes its optimal activity under the condition of 45 °C and pH 7.0, respectively, and preferentially catalyzes the hydrolysis of glucans with a ß-1,3-linkage, which is similar to the LamC previously expressed in E. coli. TherLamC27 enzyme was activated by Mn2+ and Ba2+, while it was inhibited by Cu2+, Zn2+, and Co2+. Moreover, rLamC27 was strongly inhibited by 10 mM EDTA with 7.5% of its original activity remiaining, and weakly by SDS and Triton X-100. In antifungal assay, rLamC27 was conformed to possess lytic and antifungal activity against rice blast fungus. Specifically, a significant decrease germ tube and appressorium formation ratios from 94% to 59% and 97%-51%, respectively, were observed following exposure to rLamC27. H2DCFDA and CFW staining further demonstrated that the fungistasis capability of rLamC27 could be contributed by its ability to hydrolyze components of the cell wall. All these favorable properties indicate a promising potential for using rLamC27 as a biological antifungal agent in areas such as plant protection and food preservation.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Myxococcales/enzimologia , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Expressão Gênica , Metais/metabolismo , Myxococcales/genética , Myxococcales/metabolismo , Oryza/microbiologia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Especificidade por Substrato
11.
Biochem Biophys Res Commun ; 503(3): 1575-1580, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131251

RESUMO

Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone at 37 °C and 30 °C. However, mutant strain Pseudomonas putida MT54, obtained by transposon mutagenesis from P. putida DLL-E4, could not degrade para-nitrophenol at 37 °C. The mutant genes including DW66_0143, DW66_0153 and pnpB were discovered in strain MT54 by whole genome resequencing. Gene knockout and complementation confirmed the necessity of PnpB in PNP degradation by temperature-sensitive strain MT54. PnpA catalyzes the first step in complete degradation of PNP, and we found its activity was significantly enhanced by PnpB. The measurement of bacterial two-hybrid system indicated that the effect was not mediated by the direct interaction between PnpA and PnpB, but caused by the elimination of product inhibition of PnpA. Furthermore, PnpA was characterized as a psychrophilic enzyme with optimum temperature of 20 °C. We concluded that the lowered activity of PnpA resulted from inactivation of PnpB at the restrictive temperature induced the temperature-sensitive characteristic of P. putida MT54.


Assuntos
Nitrofenóis/metabolismo , Oxigenases/metabolismo , Pseudomonas putida/metabolismo , Temperatura , Oxigenases/genética
12.
Biochem Biophys Res Commun ; 504(4): 715-720, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217456

RESUMO

p-Nitrophenol 4-monooxygenase PnpA, the key enzyme in the hydroquinone pathway of p-nitrophenol (PNP) degradation, catalyzes the monooxygenase reaction of PNP to p-benzoquinone in the presence of FAD and NADH. Here, we determined the first crystal structure of PnpA from Pseudomonas putida DLL-E4 in its apo and FAD-complex forms to a resolution of 2.04 Šand 2.48 Å, respectively. The PnpA structure shares a common fold with hydroxybenzoate hydroxylases, despite a low amino sequence identity of 14-18%, confirming it to be a member of the Class A flavoprotein monooxygenases. However, substrate docking studies of PnpA indicated that the residues stabilizing the substrate in an orientation suitable for catalysis are not observed in other homologous hydroxybenzoate hydroxylases, suggesting PnpA employs a unique catalytic mechanism. This work expands our understanding on the reaction mode for this enzyme class.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Nitrofenóis/metabolismo , Oxigenases/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/química , Benzoquinonas/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares , Estrutura Molecular , Nitrofenóis/química , Oxigenases/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
13.
Biochem Biophys Res Commun ; 507(1-4): 267-273, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30446218

RESUMO

Hydroxyquinol 1,2-dioxygenase is a key enzyme in the hydroxyquinol pathway of p-nitrophenol (PNP) degradation, and catalyzes the ring cleavage of benzenetriol to maleylacetate. Here, we report the first structure of a hydroxyquinol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida DLL-E4 (PnpC) at the resolution of 2.1 Å. The tertiary structure of PnpC resembles that of the homologous intradiol dioxygenases. The catalytic Fe(III) is pentacoordinated by the conserved Tyr160, Tyr194, His218 and His220, the citrate anion and one water molecule. Among the residues expected to interact with the substrate, structural comparison with the (chloro)catechol dioxygenases suggested that Asp80, Thr81 and Val248 are responsible for the substrate specificity. Moreover, truncation of the N-terminal α-helix of PnpC suggested the N-terminal domain is required for its soluble expression and enzyme catalysis. Our results might provide insights in the substrate recognition and rational design of this enzyme class to be used in bioremediation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Dioxigenases/química , Dioxigenases/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Modelos Moleculares , Mutação/genética , Domínios Proteicos , Especificidade por Substrato
14.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752267

RESUMO

The gene encoding the novel amylolytic enzyme designated CoMA was cloned from Corallococcus sp. strain EGB. The deduced amino acid sequence contained a predicted lipoprotein signal peptide (residues 1 to 18) and a conserved glycoside hydrolase family 13 (GH13) module. The amino acid sequence of CoMA exhibits low sequence identity (10 to 19%) with cyclodextrin-hydrolyzing enzymes (GH13_20) and is assigned to GH13_36. The most outstanding feature of CoMA is its ability to catalyze the conversion of maltooligosaccharides (≥G3) and soluble starch to maltose as the sole hydrolysate. Moreover, it can hydrolyze γ-cyclodextrin and starch to maltose and hydrolyze pullulan exclusively to panose with relative activities of 0.2, 1, and 0.14, respectively. CoMA showed both hydrolysis and transglycosylation activities toward α-1,4-glycosidic bonds but not to α-1,6-linkages. Moreover, glucosyl transfer was postulated to be the major transglycosidation reaction for producing a high level of maltose without the attendant production of glucose. These results indicated that CoMA possesses some unusual properties that distinguish it from maltogenic amylases and typical α-amylases. Its physicochemical properties suggested that it has potential for commercial development.IMPORTANCE The α-amylase from Corallococcus sp. EGB, which was classified to the GH13_36 subfamily, can catalyze the conversion of maltooligosaccharides (≥G3) and soluble starch to maltose as the sole hydrolysate. An action mechanism for producing a high level of maltose without the attendant production of glucose has been proposed. Moreover, it also can hydrolyze γ-cyclodextrin and pullulan. Its biochemical characterization suggested that CoMA may be involved the accumulation of maltose in Corallococcus media.


Assuntos
DNA Bacteriano/isolamento & purificação , Glicosídeo Hidrolases/genética , Myxococcales/genética , Oligossacarídeos/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Maltose/metabolismo , Myxococcales/metabolismo , Análise de Sequência de DNA , Amido/metabolismo , Temperatura , alfa-Amilases/genética , alfa-Amilases/metabolismo , gama-Ciclodextrinas/metabolismo
15.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625980

RESUMO

A novel ß-(1,3)-glucanase gene designated lamC, cloned from Corallococcus sp. strain EGB, contains a fascin-like module and a glycoside hydrolase family 16 (GH16) catalytic module. LamC displays broad hydrolytic activity toward various polysaccharides. Analysis of the hydrolytic products revealed that LamC is an exo-acting enzyme on ß-(1,3)(1,3)- and ß-(1,6)-linked glucan substrates and an endo-acting enzyme on ß-(1,4)-linked glucan and xylan substrates. Site-directed mutagenesis of conserved catalytic Glu residues (E304A and E309A) demonstrated that these activities were derived from the same active site. Excision of the fascin-like module resulted in decreased activity toward ß-(1,3)(1,3)-linked glucans. The carbohydrate-binding assay showed that the fascin-like module was a novel ß-(1,3)-linked glucan-binding module. The functional characterization of the fascin-like module and catalytic module will help us better understand these enzymes and modules.IMPORTANCE In this report of a bacterial ß-(1,3)(1,3)-glucanase containing a fascin-like module, we reveal the ß-(1,3)(1,3)-glucan-binding function of the fascin-like module present in the N terminus of LamC. LamC displays exo-ß-(1,3)/(1,6)-glucanase and endo-ß-(1,4)-glucanase/xylanase activities with a single catalytic domain. Thus, LamC was identified as a novel member of the GH16 family.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Myxococcales/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Clonagem Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Myxococcales/química , Myxococcales/genética , Myxococcales/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato
16.
Protein Expr Purif ; 129: 122-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26102340

RESUMO

The gene encoding a novel glucoamylase (GlucaM) from the Corallococcus sp. strain EGB was cloned and heterologous expressed in Escherichia coli BL21(DE3), and the enzymatic characterization of recombinant GlucaM (rGlucaM) was determined in the study. The glucaM had an open reading frame of 1938 bp encoding GlucaM of 645 amino acids with no signal peptide. GlucaM belongs to glycosyl hydrolase family 15 and shares the highest identity 96% with the GH15 glucoamylase of Corallococcus coralloides DSM 2259. The rGlucaM with His-tag was purified by the Ni2+-NTA resin, with a specific activity from 3.4 U/mg up to 180 U/mg, and the molecular weight of rGlucaM was approximately 73 kDa on SDS-PAGE. The Km and Vmax of rGlucaM for soluble starch were 1.2 mg/mL and 46 U/mg, respectively. rGlucaM was optimally active at pH 7.0 and 50 °C and had highly tolerance to high concentrations of salts, detergents, and various organic solvents. rGlucaM hydrolyzed soluble starch to glucose, and hydrolytic activities were also detected with amylopectin, amylase, glycogen, starch (potato), α-cyclodextrin, starch (corn and potato). The analysis of hydrolysis products shown that rGlucaM with α-(1-4),(1-6)-D-glucan glucohydrolase toward substrates. These characteristics indicated that the GlucaM was a new member of glucoamylase family and a potential candidate for industrial application.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Glucana 1,4-alfa-Glucosidase , Myxococcales/genética , Amido/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia de Afinidade , Escherichia coli/genética , Escherichia coli/metabolismo , Glucana 1,4-alfa-Glucosidase/biossíntese , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/isolamento & purificação , Hidrólise , Myxococcales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
17.
Appl Environ Microbiol ; 82(14): 4169-4179, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208123

RESUMO

UNLABELLED: 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE: 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.


Assuntos
Alcaligenaceae/enzimologia , Alcaligenaceae/metabolismo , Benzoxazóis/metabolismo , Ativadores de Enzimas/metabolismo , Hidrolases/metabolismo , Redes e Vias Metabólicas/genética , Metais/metabolismo , Alcaligenaceae/genética , Biotransformação , Clonagem Molecular , Sequência Conservada , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Cinética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
18.
Appl Environ Microbiol ; 81(6): 1977-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576603

RESUMO

A novel α-amylase, AmyM, was purified from the culture supernatant of Corallococcus sp. strain EGB. AmyM is a maltohexaose-forming exoamylase with an apparent molecular mass of 43 kDa. Based on the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry and peptide mass fingerprinting of AmyM and by comparison to the genome sequence of Corallococcus coralloides DSM 2259, the AmyM gene was identified and cloned into Escherichia coli. amyM encodes a secretory amylase with a predicted signal peptide of 23 amino acid residues, which showed no significant identity with known and functionally verified amylases. amyM was expressed in E. coli BL21(DE3) cells with a hexahistidine tag. The signal peptide efficiently induced the secretion of mature AmyM in E. coli. Recombinant AmyM (rAmyM) was purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography, with a specific activity of up to 14,000 U/mg. rAmyM was optimally active at 50°C in Tris-HCl buffer (50 mM; pH 7.0) and stable at temperatures of <50°C. rAmyM was stable over a wide range of pH values (from pH 5.0 to 10.0) and highly tolerant to high concentrations of salts, detergents, and various organic solvents. Its activity toward starch was independent of calcium ions. The Km and Vmax of recombinant AmyM for soluble starch were 6.61 mg ml(-1) and 44,301.5 µmol min(-1) mg(-1), respectively. End product analysis showed that maltohexaose accounted for 59.4% of the maltooligosaccharides produced. These characteristics indicate that AmyM has great potential in industrial applications.


Assuntos
Myxococcales/enzimologia , Oligossacarídeos/metabolismo , alfa-Amilases/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Myxococcales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura , alfa-Amilases/química , alfa-Amilases/genética , alfa-Amilases/isolamento & purificação
19.
Appl Environ Microbiol ; 81(6): 2182-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595756

RESUMO

Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] is a widely applied herbicide with potential carcinogenic properties. N-Deethoxymethylation is the key step in acetochlor biodegradation. N-Deethoxymethylase is a multicomponent enzyme that catalyzes the conversion of acetochlor to 2'-methyl-6'-ethyl-2-chloroacetanilide (CMEPA). Fast detection of CMEPA by a two-enzyme (N-deethoxymethylase-amide hydrolase) system was established in this research. Based on the fast detection method, a three-component enzyme was purified from Rhodococcus sp. strain T3-1 using ammonium sulfate precipitation and hydrophobic interaction chromatography. The molecular masses of the components of the purified enzyme were estimated to be 45, 43, and 11 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the results of peptide mass fingerprint analysis, acetochlor N-deethoxymethylase was identified as a cytochrome P450 system, composed of a cytochrome P450 oxygenase (43-kDa component; EthB), a ferredoxin (45 kDa; EthA), and a reductase (11 kDa; EthD), that is involved in the degradation of methyl tert-butyl ether. The gene cluster ethABCD was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). Resting cells of a recombinant E. coli strain showed deethoxymethylation activity against acetochlor. Subcloning of ethABCD showed that ethABD expressed in E. coli BL21(DE3) has the activity of acetochlor N-deethoxymethylase and is capable of converting acetochlor to CMEPA.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Herbicidas/metabolismo , Rhodococcus/enzimologia , Rhodococcus/metabolismo , Toluidinas/metabolismo , Biotransformação , Fracionamento Químico , Cromatografia Líquida , Clonagem Molecular , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/isolamento & purificação , Ferredoxinas/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Peso Molecular , Oxirredutases/química , Oxirredutases/isolamento & purificação , Oxirredutases/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
20.
Appl Environ Microbiol ; 81(24): 8254-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386060

RESUMO

2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02' in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase.


Assuntos
Delftia/metabolismo , Oxigenases/genética , Sphingomonadaceae/metabolismo , Toluidinas/metabolismo , Acetamidas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Delftia/enzimologia , Delftia/genética , Eletroforese em Gel Bidimensional , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Oxigenases/metabolismo , Mapeamento de Peptídeos , Pseudomonas putida/metabolismo , Análise de Sequência de DNA , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA