Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 146(22): 15428-15437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795044

RESUMO

Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.

2.
Nano Lett ; 23(9): 3904-3912, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37043295

RESUMO

Transcytosis-based active transport of cancer nanomedicine has shown great promise for enhancing its tumor extravasation and infiltration and antitumor activity, but how the key nanoproperties of nanomedicine, particularly particle size, influence the transcytosis remains unknown. Herein, we used a transcytosis-inducing polymer, poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA), and fabricated stable OPDEA-based micelles with different sizes (30, 70, and 140 nm in diameter) from its amphiphilic block copolymer, OPDEA-block-polystyrene (OPDEA-PS). The study of the micelle size effects on cell transcytosis, tumor extravasation, and infiltration showed that the smallest micelles (30 nm) had the fastest transcytosis and, thus, the most efficient tumor extravasation and infiltration. So, the 7-ethyl-10-hydroxyl camptothecin (SN38)-conjugated OPDEA micelles of 30 nm had much enhanced antitumor activity compared with the 140 nm micelles. These results are instructive for the design of active cancer nanomedicine.


Assuntos
Camptotecina , Micelas , Linhagem Celular Tumoral , Camptotecina/farmacologia , Polímeros , Transcitose , Resultado do Tratamento , Tamanho da Partícula
3.
Angew Chem Int Ed Engl ; 63(22): e202404179, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488293

RESUMO

Chemical recycling of polymers to monomers presents a promising solution to the escalating crisis associated with plastic waste. Despite considerable progress made in this field, the primary efforts have been focused on redesigning new monomers to produce readily recyclable polymers. In contrast, limited research into the potential of seemingly "non-polymerizable" monomers has been conducted. Herein, we propose a paradigm that leverages a "chaperone"-assisted strategy to establish closed-loop circularity for a "non-polymerizable" α, ß-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO). The resulting PDPO, a structural analogue of poly(δ-valerolactone) (PVL), exhibits enhanced thermal properties with a melting point (Tm) of 114 °C and a decomposition temperature (Td,5%) of 305 °C. Notably, owing to the structural similarity between DPO and δ-VL, the copolymerization generates semi-crystalline P(DPO-co-VL)s irrespective of the DPO incorporation ratio. Intriguingly, the inherent C=C bonds in P(DPO-co-VL)s enable their convenient post-functionalization via Michael-addition reaction. Lastly, PDPO was demonstrated to be chemically recyclable via ring-closing metathesis (RCM), representing a significant step towards the pursuit of enabling the closed-loop circularity of "non-polymerizable" lactones without altering the ultimate polymer structure.

4.
Macromol Rapid Commun ; 44(6): e2200888, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583944

RESUMO

Polymer dielectrics with high energy density are of urgent demand in electric and electronic devices, but the tradeoff between dielectric constant and breakdown strength is still unsolved. Herein, the synthesis and molar mass control of three alternating [1.1.1]propellane-(meth)acrylate copolymers, denoted as P-MA, P-MMA, and P-EA, respectively, are reported. These copolymers exhibit high thermal stability and are semi-crystalline with varied glass transition temperatures and melting temperatures. The rigid bicyclo[1.1.1]pentane units in the polymer backbone promote the orientational polarization of the polar ester groups, thus enhancing the dielectric constants of these polymers, which are 4.50 for P-EA, 4.55 for P-MA, and 5.11 for P-MMA at 10 Hz and room temperature, respectively. Moreover, the high breakdown strength is ensured by the non-conjugated nature of bicyclo[1.1.1]pentane unit. As a result, these copolymers show extraordinary energy storage performance; P-MA exhibits a discharge energy density of 9.73 J cm-3 at 750 MV m-1 and ambient temperature. This work provides a new type of promising candidates as polymer dielectrics for film capacitors, and offers an efficient strategy to improve the dielectric and energy storage properties by introducing rigid non-conjugated bicyclo[1.1.1]pentane unit into the polymer backbone.


Assuntos
Metanfetamina , Pentanos , Acrilatos , Polímeros
5.
Eur Heart J ; 43(43): 4579-4595, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35929617

RESUMO

AIMS: Exercise confers protection against cardiovascular ageing, but the mechanisms remain largely unknown. This study sought to investigate the role of fibronectin type-III domain-containing protein 5 (FNDC5)/irisin, an exercise-associated hormone, in vascular ageing. Moreover, the existence of FNDC5/irisin in circulating extracellular vesicles (EVs) and their biological functions was explored. METHODS AND RESULTS: FNDC5/irisin was reduced in natural ageing, senescence, and angiotensin II (Ang II)-treated conditions. The deletion of FNDC5 shortened lifespan in mice. Additionally, FNDC5 deficiency aggravated vascular stiffness, senescence, oxidative stress, inflammation, and endothelial dysfunction in 24-month-old naturally aged and Ang II-treated mice. Conversely, treatment of recombinant irisin alleviated Ang II-induced vascular stiffness and senescence in mice and vascular smooth muscle cells. FNDC5 was triggered by exercise, while FNDC5 knockout abrogated exercise-induced protection against Ang II-induced vascular stiffness and senescence. Intriguingly, FNDC5 was detected in human and mouse blood-derived EVs, and exercise-induced FNDC5/irisin-enriched EVs showed potent anti-stiffness and anti-senescence effects in vivo and in vitro. Adeno-associated virus-mediated rescue of FNDC5 specifically in muscle but not liver in FNDC5 knockout mice, promoted the release of FNDC5/irisin-enriched EVs into circulation in response to exercise, which ameliorated vascular stiffness, senescence, and inflammation. Mechanistically, irisin activated DnaJb3/Hsp40 chaperone system to stabilize SIRT6 protein in an Hsp70-dependent manner. Finally, plasma irisin concentrations were positively associated with exercise time but negatively associated with arterial stiffness in a proof-of-concept human study. CONCLUSION: FNDC5/irisin-enriched EVs contribute to exercise-induced protection against vascular ageing. These findings indicate that the exerkine FNDC5/irisin may be a potential target for ageing-related vascular comorbidities.


Assuntos
Vesículas Extracelulares , Sirtuínas , Humanos , Camundongos , Animais , Idoso , Pré-Escolar , Fibronectinas/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Envelhecimento , Angiotensina II/farmacologia , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo
6.
Biomacromolecules ; 23(12): 5213-5224, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36382861

RESUMO

Poly(α-methylene ester)s are an attractive type of functional aliphatic polyesters that represent a platform for the fabrication of various biodegradable and biomedical polymers. Herein, we report the controlled ring-opening polymerization (ROP) of a seven-membered α-methylene lactone (3-methylene-1,5-dioxepan-2-one, MDXO) that was synthesized based on the Baylis-Hillman reaction. The chemoselective ROP of MDXO was catalyzed by diphenyl phosphate (DPP) at 60 °C or stannous octoate (Sn(Oct)2) at 130 °C, generating α-methylene-containing polyester (PMDXO) with a linear structure and easily tunable molar mass. The ring-opening copolymerization of MDXO with ε-caprolactone or 1,5-dioxepan-2-one was also performed under the catalysis of DPP or Sn(Oct)2 to afford copolymers with different compositions and sequence structures that are influenced by the kinds of monomers and catalysts. PMDXO is a slowly crystallizable polymer with a glass transition temperature of ca. -33 °C, and its melting temperature and enthalpy are significantly influenced by the thermal history. The thermal properties of the copolymers are dependent on their composition and sequence structure. Finally, the post-modification of PMDXO based on the thiol-Michael addition reaction was briefly explored using triethylamine as a catalyst. Given the optimized condition, PMDXO could be dually modified to afford biodegradable polyesters with different functionalities.


Assuntos
Materiais Biocompatíveis , Ésteres , Materiais Biocompatíveis/química , Poliésteres/química , Polímeros/química
7.
Macromol Rapid Commun ; 42(18): e2100169, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028933

RESUMO

Self-immolative polymers are a special kind of degradable polymers that depolymerize into small molecules through a cascade of reactions upon stimuli-triggered cleavage of the polymer chain ends. This work reports the design and synthesis of a fluoride-triggered self-immolative polyester. A 2,4-disubstitued 4-hydroxy butyrate is first confirmed to quickly cyclize in solution to form a γ-butyrolactone derivative. Then, the Passerini three component reaction (P-3CR) of an AB dimer (A: aldehyde, B: carboxylic acid) with tert-butyl isocyanide or oligo(ethylene glycol) isocyanide affords two poly(2,4-disubstitued 4-hydroxybutyrate) derivatives (P2 and P3). Two silyl ether end-capped polymers (P4 and P5) are abtained from P2 and P3, and their degradation in solution is examined by NMR spectrum and size exclusion chromatography. Polymers P4 and P5 are stable in the absence of tetrabutylammonium fluoride (TBAF), while in the presence of TBAF, the molar masses of P4 and P5 gradually decrease with time together with the increase of the amount of formed 2,4-disubstitued γ-butyrolactone. The depolymerization mechanism is proposed. The first step is the fast removal of the silyl ether by fluoride. Then, the released hydroxyl group initiates the quick head-to-tail depolymerization of the polyester via intramolecular cyclization.


Assuntos
Fluoretos , Polímeros , Hidroxibutiratos , Poliésteres
8.
Angew Chem Int Ed Engl ; 60(36): 19750-19758, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046980

RESUMO

The emerging strategies of accelerating the cleavage reaction in tumors through locally enriching the reactants is promising. Yet, the applications are limited due to the lack of the tumor-selectivity for most of the reactants. Here we explored an alternative approach to leverage the rate constant by locally inducing an in vivo catalyst. We found that the desilylation-induced cleavage chemistry could be catalyzed in vivo by cationic micelles, and accelerated over 1400-fold under physiological condition. This micelle-catalyzed controlled release platform is demonstrated by the release of a 6-hydroxyl-quinoline-2-benzothiazole derivative (HQB) in two cancer cell lines and a NIR dye in mouse tumor xenografts. Through intravenous injection of a pH-sensitive polymer micelles, we successfully applied this strategy to a prodrug activation of hydroxyl camptothecin (OH-CPT) in tumors. Its "decaging" efficiency is 42-fold to that without cationic micelles-mediated catalysis. This micelle-catalyzed desilylation strategy unveils the potential that micelle may act beyond a carrier but a catalyst for local perturbing or activation.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/química , Animais , Antineoplásicos/química , Catálise , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Micelas , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia
9.
Biomacromolecules ; 20(7): 2809-2820, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31185717

RESUMO

Transient increase of reactive oxygen species (ROS) is vital for some physiological processes, whereas the chronic and sustained high ROS level is usually implicated in the inflammatory diseases and cancers. Herein, we report the innovative redox-responsive theranostic micellar nanoparticles that are able to load anticancer drugs through coordination and hydrophobic interaction and to fluorescently monitor the intracellular redox status. The nanoparticles were formed by the amphiphilic block copolymers composed of a PEG segment and a selenide-containing hydrophobic polycarbonate block with a small fraction of coumarin-based chromophore. Under the alternative redox stimulation that might be encountered in the physiological process of some healthy cells, these nanoparticles underwent the reversible changes in size, morphology, and fluorescence intensity. With the assistance of small model compounds, we clarified the chemistry behind these changes, that is, the redox triggered reversible transformation between selenide and selenoxide. Upon the monotonic oxidation similar to the sustained high ROS level of cancer cells, the nanoparticles could be disrupted completely, which was accompanied by the drastic decrease in fluorescence. Cisplatin and paclitaxel were simultaneously coloaded in the nanoparticles with a moderate efficacy, and the coordination between selenide and platinum improved the stability of the drug-loaded nanoparticles against dilution. The naked nanoparticles are cytocompatible, whereas the dual drug-loaded nanoparticles exhibited a concentration dependent and synergistic cytotoxicity to triple-negative breast cancer (TNBC) cells. Of importance, the drug-loaded nanoparticles are much more toxic to TNBC cells than to normal cells due in part to ROS overproduction in the former cell lines.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Oxirredução , Paclitaxel/química , Paclitaxel/farmacologia , Cimento de Policarboxilato/química , Cimento de Policarboxilato/farmacologia , Espécies Reativas de Oxigênio/química , Neoplasias de Mama Triplo Negativas/patologia
10.
Biomacromolecules ; 19(6): 2182-2193, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29669209

RESUMO

Reactive oxygen species (ROS)-responsive polymers have attracted attention for their potential in photodynamic therapy. Herein, we report the ROS-responsive aliphatic polycarbonates prepared by the ring-opening polymerization (ROP) of three six-membered cyclic carbonate monomers with ethyl selenide, phenyl selenide or ethyl telluride groups. Under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), all three monomers underwent the controlled anionic ROP, showing a feature of equilibrium polymerization due to the bulky effect of 5,5-disubstituents. With PEG macroinitiator, three series amphiphilic block copolymers were prepared. They could form spherical nanoparticles of ∼100 nm, which were stable in neutral phosphate buffer but dissociated rapidly under triggering of H2O2. We studied the H2O2-induced oxidation profiles of selenide- or telluride-containing small molecules by 1H NMR and revealed the factors that affect the oxidation kinetics and products. On this basis, the oxidative degradation mechanism of the copolymer nanoparticles has been clarified. Under the same oxidative condition, the telluride-containing nanoparticle degraded with the fastest rate while the phenyl selenide-based one degraded most slowly. These ROS-responsive nanoparticles could load photosensitizer chlorin e6 (Ce6) and anticancer drug doxorubicin (DOX). Under red light irradiation, Ce6-sensitized production of 1O2 that triggered the degradation of nanoparticles, resulting in an accelerated payload release. In vitro cytotoxicity assays demonstrate that the nanoparticles coloaded with DOX and Ce6 exhibited a synergistic cell-killing effect to MCF-7 cells, representing a novel responsive nanoplatform for PDT and/or chemotherapy.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Cimento de Policarboxilato , Clorofilídeos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacocinética , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Cimento de Policarboxilato/química , Cimento de Policarboxilato/farmacocinética , Cimento de Policarboxilato/farmacologia , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
11.
Org Biomol Chem ; 15(39): 8384-8392, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28948264

RESUMO

Maleamic acid derivatives as weakly acid-sensitive linkers or caging groups have been used widely in smart delivery systems. Here we report on the controlled synthetic methods to mono- and dialkyl substituted maleamic acids and their pH-dependent hydrolysis behaviors. Firstly, we studied the reaction between n-butylamine and citraconic anhydride, and found that the ratio of the two n-butyl citraconamic acid isomers (α and ß) could be finely tuned by controlling the reaction temperature and time. Secondly, we investigated the effects of solvent, basic catalyst, and temperature on the reaction of n-butylamine with 2,3-dimethylmaleic anhydride, and optimized the reaction conditions to efficiently synthesize the dimethylmaleamic acids. Finally, we compared the pH-dependent hydrolysis profiles of four OEG-NH2 derived water-soluble maleamic acid derivatives. The results reveal that the number, structure, and position of the substituents on the cis-double bond exhibit a significant effect on the pH-related hydrolysis kinetics and selectivity of the maleamic acid derivatives. Interestingly, for the mono-substituted citraconamic acids (α-/ß-isomer), we found that their hydrolyses are accompanied by the isomerization between the two isomers.


Assuntos
Maleatos/química , Maleatos/síntese química , Alquilação , Técnicas de Química Sintética , Concentração de Íons de Hidrogênio , Hidrólise , Isomerismo , Cinética
12.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28837743

RESUMO

Oxidation-responsive aliphatic polycarbonates represent a promising branch of functional biodegradable polymers. This paper reports the synthesis and ring-opening polymerization (ROP) of an eight-membered cyclic carbonate possessing phenylboronic pinacol ester (C3) and the H2 O2 -triggered degradation of its polymer (PC3). C3 is prepared from the inexpensive and readily available diethanolamine with a moderate yield and undergoes the well-controlled anionic ROP with a living character under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene. It can also be copolymerized with l-lactide, trimethylene carbonate, and 5-ter-butyloxycarbonylamino trimethylene carbonate, affording the copolymers with a varied distribution of the repeating units. To clearly demonstrate the oxidative degradation mechanism of PC3, this paper first investigates the H2 O2 -induced decomposition of small-molecule model compounds by proton nuclear magnetic resonance (1 H NMR). It is found that the adduct products formed by the in-situ-generated secondary amines and p-quinone methide (QM) are thermodynamically unstable and can decompose slowly back to QM and the amines. On this basis, this paper further studies the H2 O2 -accelerated degradation of PC3 nanoparticles that are prepared by the o/w emulsion method. A sequential process of oxidation of the phenylboronic ester, 1,6-elimination of the in-situ-generated phenol, releasing CO2 and intramolecular cyclization or isomerization is proposed as the degradation mechanism of PC3.


Assuntos
Carbonatos/química , Cimento de Policarboxilato/química , Aminas/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Carbonatos/síntese química , Catálise , Ciclização , Peróxido de Hidrogênio/química , Indolquinonas/química , Nitrogênio/química , Oxirredução , Polimerização , Espectroscopia de Prótons por Ressonância Magnética
13.
Yi Chuan ; 39(7): 568-575, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28757471

RESUMO

How the organ size is determined is a fundamental question in developmental biology. The metazoan Hippo signaling pathway is well established to negatively regulate organ sizes. Recent studies in plants have started to shape an emerging Hippo signaling pathway. In this review, we summarize the studies in the past decade on the two known components of plant Hippo signaling pathway, the Ste20/Hippo homolog SIK1, and the MOB1/Mats homolog MOB1, with a focus on their developmental functions. Then we envision future discoveries that may shape a complete Hippo signaling pathway in plants.


Assuntos
Proteínas de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Tamanho do Órgão
14.
Macromol Rapid Commun ; 36(22): 2012-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297612

RESUMO

Polymer-drug conjugates have attracted great interest as one category of various promising nanomedicines due to the advantages of high drug-loading capacity, negligible burst release, and improved pharmacokinetics as compared with the small molecular weight drugs or the polymeric delivery systems with physically encapsulated drugs. Herein, a new type of oxidation-responsive polymer-drug conjugates composed of a poly(ethylene glycol) (PEG) block and a hydrophobic polyacrylate block to which Naproxen is attached through a phenylboronic ester linker is reported. The amphiphilic block copolymers are synthesized through the reversible addition-fragmentation chain transfer polymerization of the Naproxen-containing acrylic monomer using a PEG chain transfer agent. In neutral aqueous buffer, the conjugates formed nanoparticles with diameters of ≈150-300 nm depending on the length of the hydrophobic segment. The dynamic covalent bond of the phenylboronic ester is stabilized due to the hydrophobic microenvironment inside the nanoparticles. Upon exposure to H2 O2 , the phenylboronic ester is oxidized rapidly into the phenol derivative which underwent a 1,6-elimination reaction, releasing the intact Naproxen. The rate of drug release is influenced by the concentration of H2 O2 and the hydrophobic block length. This type of oxidation-responsive polymer-drug conjugate is feasible for other drugs containing hydroxyl group or amino group.


Assuntos
Resinas Acrílicas/química , Ácidos Borônicos/química , Portadores de Fármacos/química , Nanopartículas/química , Naproxeno/química , Polietilenoglicóis/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Ésteres , Peróxido de Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Nanomedicina/métodos , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Polimerização
15.
Biomacromolecules ; 15(10): 3531-9, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25144934

RESUMO

We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified ß-cyclodextrin (ß-CD) derivatives have been synthesized via the facile reaction between ß-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile ß-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(ε-caprolactone) into the core of the aggregates.


Assuntos
Ésteres/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , beta-Ciclodextrinas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão/métodos , Água/química
16.
Soft Matter ; 10(15): 2671-8, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24647364

RESUMO

A novel glucose-responsive hydrogel system based on dynamic covalent chemistry and inclusion complexation was described. Hydrogels are formed by simply mixing the solutions of three components: poly(ethylene oxide)-b-poly vinyl alcohol (PEO-b-PVA) diblock polymer, α-cyclodextrin (α-CD) and phenylboronic acid (PBA)-terminated PEO crosslinker. Dynamic covalent bonds between PVA and PBA provide sugar-responsive crosslinking, and the inclusion complexation between PEO and α-CD can promote hydrogel formation and enhance hydrogel stability. The ratios of the three components have a remarkable effect on the gelation time and the mechanical properties of the final gels. In rheological measurements, the hydrogels are demonstrated to possess solid-like behaviour and good structural recovery ability after yielding. The sugar-responsiveness of the hydrogels was examined by protein loading and release experiments, and the results indicate that this property is also dependent on the compositions of the gels; at a proper component ratio, a new glucose-responsive hydrogel system operating at physiological pH can be obtained. The combination of good biocompatibility of the three components and the easy preparation of hydrogels with tunable glucose-responsiveness may enable an alternative design of hydrogel systems that finds potential applications in biomedical and pharmaceutical fields, such as treatment of diabetes.


Assuntos
Glucose/química , Hidrogéis/química , Animais , Ácidos Borônicos/química , Bovinos , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Polímeros/química , Reologia , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , alfa-Ciclodextrinas/química
17.
Macromol Rapid Commun ; 35(4): 474-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307264

RESUMO

A new approach to periodic vinyl copolymers via combination of atom transfer radical addition (ATRA) and atom transfer radical coupling (ATRC) is reported. The two examples are methyl methacrylate (MMA) and styrene (St) periodic copolymer (P(SMMS)) and acrylonitrile (AN) and St periodic copolymer (P(SAAS)). First, two monomer sequence units (MSU) with built-in sequence, SMMS and SAAS, are synthesized through the controlled ATRA of two ATRP initiators with St. Then, the ATRC of SMMS and SAAS are conducted at high radical conditions to generate two types of high-molecular-weight copolymers, P(SMMS) and P(SAAS). Though side reactions can not be totally avoided, characterizations of the polymer structure with a variety of means confirm that the main chain structures of P(SMMS) and (PSAAS) are predominantly with the periodic sequences from the MSUs. Attempts to suppress the side reactions are successful via the MNP-mediated ATRC of SMMS and SAAS.


Assuntos
Radicais Livres/química , Polímeros/química , Compostos de Vinila/química , Metilmetacrilato/química , Compostos Nitrosos/química , Polímeros/síntese química
18.
J Mater Chem B ; 12(6): 1569-1578, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38252543

RESUMO

Antimicrobial peptide-mimicking antibacterial polymers represent a practical strategy to conquer the ever-growing threat of antimicrobial resistance. Herein, we report the syntheses and antibacterial performance of degradable amphiphilic cationic polyesters containing pendent quaternary ammonium motifs and hydrophobic alkyl or fluoroalkyl groups. These polyesters were conveniently prepared from poly(3-methylene-1,5-dioxepan-2-one) via highly efficient one-pot successive thiol-Michael addition reactions. The antibacterial activity of these polyesters against S. aureus and E. coli and their hemolytic activity toward red blood cells were evaluated; some of them showed moderate antibacterial activity and selectivity against Gram-positive S. aureus. The membrane disruption mechanism of these cationic polyesters was briefly explored by monitoring the bacteria killing kinetics and SEM observations. Moreover, the effects of cationic/hydrophobic ratio and the incorporation of fluoroalkyl groups on the antibacterial activity and selectivity of the polyesters were demonstrated.


Assuntos
Escherichia coli , Poliésteres , Poliésteres/química , Staphylococcus aureus , Polímeros/química , Antibacterianos/farmacologia
19.
ACS Macro Lett ; 13(8): 1084-1092, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39103245

RESUMO

We report a simple strategy to transform a nonpolymerizable six-membered α,ß-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO), into polymerizable bicyclic lactones via photochemical [2 + 2] cycloaddition. Two bicyclic lactones, M1 and M2, were obtained by the photochemical [2 + 2] cycloaddition of tetramethylethylene and DPO. Ring-opening polymerization (ROP) of M1 and M2 catalyzed by diphenyl phosphate (DPP), La[N(SiMe3)2]3, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylide-namino]-2λ5, 4λ5-catenadi(phosphazene) (tBu-P4) were conducted. M1 is highly polymerizable, either DPP or La[N(SiMe3)2]3 could catalyze its living ROP under mild conditions, affording the well-defined PM1 with a predictable molar mass and low dispersity. M2 could only be polymerized with tBu-P4 as the catalyst, also generating the same polymer PM1. PM1 has high thermal stability, with a Td,5% being up to 376 °C. Ring-opening copolymerization (ROcP) of M1 and δ-valerolactone (δ-VL) catalyzed by La[N(SiMe3)2]3 afforded a series of random copolymers with enhanced thermal stabilities. Both PM1 and the copolymer containing 10 mol % M1 exhibited excellent resistance to acidic and basic hydrolysis. Our results demonstrate that direct photochemical [2 + 2] cycloaddition of α,ß-conjugated valerolactone is not only a strategy to tune its polymerizability, but also allows for the synthesis of highly thermally stable aliphatic polyesters, inaccessible by other methods.

20.
Biomacromolecules ; 14(5): 1555-63, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23570500

RESUMO

A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.


Assuntos
Resinas Acrílicas/síntese química , Portadores de Fármacos/síntese química , Nanopartículas/química , Polímeros/síntese química , Resinas Acrílicas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Composição de Medicamentos , Fluoresceína-5-Isotiocianato , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Micelas , Microscopia Eletrônica de Transmissão , Muramidase , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polimerização , Polímeros/farmacologia , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA