Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975803

RESUMO

Aging represents a significant risk factor for compromised tissue function and the development of chronic diseases in the human body. This process is intricately linked to oxidative stress, with HClO serving as a vital reactive oxygen species (ROS) within biological systems due to its strong oxidative properties. Hence, conducting a thorough examination of HClO in the context of aging is crucial for advancing the field of aging biology. In this work, we successfully developed a fluorescent probe, OPD, tailored specifically for detecting HClO in senescent cells and in vivo. Impressively, OPD exhibited a robust reaction with HClO, showcasing outstanding selectivity, sensitivity, and photostability. Notably, OPD effectively identified HClO in senescent cells for the first time, confirming that DOX- and ROS-induced senescent cells exhibited higher HClO levels compared to uninduced normal cells. Additionally, in vivo imaging of zebrafish demonstrated that d-galactose- and ROS-stimulated senescent zebrafish displayed elevated HClO levels compared to normal zebrafish. Furthermore, when applied to mouse tissues and organs, OPD revealed increased fluorescence in the organs of senescent mice compared to their nonsenescent counterparts. Our findings also illustrated the probe's potential for detecting changes in HClO content pre- and post-aging in living mice. Overall, this probe holds immense promise as a valuable tool for in vivo detection of HClO and for studying aging biology in live organisms.

2.
Anal Chem ; 95(42): 15795-15802, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815496

RESUMO

Lysosomes are one of the important organelles within cells, and their dynamic movement processes are associated with many biological events. Therefore, real-time monitoring of lysosomal dynamics processes has far-reaching implications. A lysosome-targeted fluorescent probe N(CH2)3-BD-PZ is proposed for real-time monitoring of lysosomal kinetic motility. Using this probe, the dynamic process of lysosomes under starvation induction was successfully explored through fluorescence imaging. Importantly, we observed a new pattern of lysosomal dynamic movement, in which an irregular lysosome was slowly cleaved into two different-sized touching lysosomes and then fused to form a new round lysosome. This research provides a powerful fluorescence tool to understand the dynamic motility of intracellular lysosomes under fluorescence imaging.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Células HeLa , Imagem Óptica , Autofagia
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569280

RESUMO

Mixed-lineage leukemia 1 (MLL1) introduces 1-, 2- and 3-methylation into histone H3K4 through the evolutionarily conserved set domain. In this study, bovine embryonic stem cells (bESCs, known as bESCs-F7) were established from in vitro-fertilized (IVF) embryos via Wnt signaling inhibition; however, their contribution to the endoderm in vivo is limited. To improve the quality of bESCs, MM-102, an inhibitor of MLL1, was applied to the culture. The results showed that MLL1 inhibition along with GSK3 and MAP2K inhibition (3i) at the embryonic stage did not affect bESCs' establishment and pluripotency. MLL1 inhibition improved the pluripotency and differentiation potential of bESCs via the up-regulation of stem cell signaling pathways such as PI3K-Akt and WNT. MLL1 inhibition decreased H3K4me1 modification at the promoters and altered the distribution of DNA methylation in bESCs. In summary, MLL1 inhibition gives bESCs better pluripotency, and its application may provide high-quality pluripotent stem cells for domestic animals.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Bovinos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Metilação de DNA , Leucemia/genética
4.
J Am Chem Soc ; 144(45): 20854-20865, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318188

RESUMO

Organelles are dynamic yet highly organized to preserve cellular homeostasis. However, the absence of time-resolved molecular tools for simultaneous dual-signal imaging of two organelles has prevented scientists from elucidating organelle interaction regulatory mechanisms on a nanosecond timescale. To date, the regulatory mechanisms governing the interaction between endoplasmic reticulum (ER) and autophagosomes are unknown. In this study, we propose a strategy for developing dual-fluorescence lifetime probes localized to the endoplasmic reticulum and autophagosomes to investigate their interaction regulatory mechanisms. Using the robust probe CF2, we investigated the regulatory mechanisms between ER and autophagosomes and discovered the following: (i) motile autophagosome in ER tips drives the ER tubule to grow and slide; (ii) the ER reticulate tubule forms a three-way junction centered on the autophagosome; (iii) ER autophagy is a type of cell damage index during drug-induced apoptosis. Thus, this study advances our knowledge of organelle interaction regulatory mechanisms, shedding light on the identification of therapeutic targets for neurodegenerative diseases.


Assuntos
Autofagossomos , Retículo Endoplasmático , Fluorescência , Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia
5.
Anal Chem ; 94(7): 3386-3393, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35143161

RESUMO

Hepatocellular carcinoma is a highly invasive malignant tumor of the liver, which is the main cause of cancer-related death. The cancerization of hepatocytes may lead to the changes of cell microenvironment, active substances, and enzymes. Viscosity is one of the important parameters of cell microenvironment. Therefore, the study of the change in the viscosity of hepatocytes is very important for the detection and treatment of liver cancer. However, the hepatocyte-specific fluorescent probes which can detect viscosity have not been developed yet. Herein, the first hepatocyte-specific fluorescent probe (HT-V) for viscosity detection was designed and synthesized, which exhibited excellent optical properties for biological imaging studies. By using the unique probe HT-V, compared with the normal liver cells, a significant increase of viscosity in the liver cancer cells was observed in the cell imaging experiment. The organ imaging experiments showed that the probe HT-V could be successfully used to diagnose and image hepatocellular carcinoma in vivo. In addition, in situ imaging revealed that the new probe HT-V can specifically target and image hepatocellular carcinoma in mice. We expected that this powerful tool may provide guidance for the detection and imaging of hepatocellular carcinoma in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Diagnóstico por Imagem , Corantes Fluorescentes , Hepatócitos/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Camundongos , Imagem Óptica , Microambiente Tumoral
6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008994

RESUMO

Drought is the main abiotic stress that constrains sugarcane growth and production. To understand the molecular mechanisms that govern drought stress, we performed a comprehensive comparative analysis of physiological changes and transcriptome dynamics related to drought stress of highly drought-resistant (ROC22, cultivated genotype) and weakly drought-resistant (Badila, wild genotype) sugarcane, in a time-course experiment (0 h, 4 h, 8 h, 16 h and 32 h). Physiological examination reviewed that ROC22, which shows superior drought tolerance relative to Badila, has high performance photosynthesis and better anti-oxidation defenses under drought conditions. The time series dataset enabled the identification of important hubs and connections of gene expression networks. We identified 36,956 differentially expressed genes (DEGs) in response to drought stress. Of these, 15,871 DEGs were shared by the two genotypes, and 16,662 and 4423 DEGs were unique to ROC22 and Badila, respectively. Abscisic acid (ABA)-activated signaling pathway, response to water deprivation, response to salt stress and photosynthesis-related processes showed significant enrichment in the two genotypes under drought stress. At 4 h of drought stress, ROC22 had earlier stress signal transduction and specific up-regulation of the processes response to ABA, L-proline biosynthesis and MAPK signaling pathway-plant than Badila. WGCNA analysis used to compile a gene regulatory network for ROC22 and Badila leaves exposed to drought stress revealed important candidate genes, including several classical transcription factors: NAC87, JAMYB, bHLH84, NAC21/22, HOX24 and MYB102, which are related to some antioxidants and trehalose, and other genes. These results provide new insights and resources for future research and cultivation of drought-tolerant sugarcane varieties.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Saccharum/fisiologia , Estresse Fisiológico/genética , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Fenótipo , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais
7.
Anal Chem ; 93(36): 12487-12493, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34455772

RESUMO

Accurate evaluation of cell viability is important for dosage tests of anticancer drugs, pathology, and numerous biological experiments. However, due to the serious insufficieny of fluorescent probes, which can distinguish various cell states, the study of cell viability is immensely limited. To resolve this issue, we design and synthesize a new probe ACD-E to monitor cell viability with two kinds of fluorescence signal modes, the first single fluorescent probe that can distinguish three different cell states and furnish accurate information in biological experiments. ACD-E can discriminate live and dead cells in a dual-color mode by evaluating cell mitochondrial esterase activity and can also discriminate live and early necrosis cells by determining mitochondrial viscosity in a "turn-on" mode in the near-infrared region. Significantly, the novel ACD-E can also distinguish cell viability in vivo. This work establishes a robust strategy for monitoring multiple cell states using a single fluorescent probe.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Sobrevivência Celular , Fluorescência , Viscosidade
8.
Anal Chem ; 93(41): 13800-13806, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606237

RESUMO

Aging is a biological process, and its gradual degeneration of physiological functions leads to an increase in morbidity and mortality. At present, more and more studies on aging and anti-aging drugs have been conducted, which are of great significance for promoting human health, treating aging-related diseases, and prolonging human life. In the process of aging research and evaluation of anti-aging drugs, ß-galactosidase, as an important criterion of aging, has received extensive attention. However, there is a scarcity of effective and reliable tools for aging research and anti-aging drug evaluation based on the aging markers. Hence, we developed a new highly sensitive fluorescent probe, YDGAL, for ß-galactosidase, which exhibited good affinity for ß-gal (Km = 12.35 µM), fast response speed (stable within 10 min), and extremely low detection limit (2.185 × 10-6 U/mL). Owing to the above advantages, the robust probe can visualize aging and evaluate the efficacy of anti-aging drugs at the cellular and organ levels by detecting ß-galactosidase. Through visual imaging of mouse organs, we found that the organs had different degrees of aging; dasatinib and quercetin combination therapy had a therapeutic effect on the mice, but the different organs showed distinct clearance rates on the senescent cells, which may be the limitation of the drugs. We believe that this interesting finding could provide a powerful guidance for the research on aging and the evaluation of anti-aging drugs in the future.


Assuntos
Envelhecimento , Preparações Farmacêuticas , Animais , Biomarcadores , Senescência Celular , Corantes Fluorescentes , Camundongos , beta-Galactosidase
9.
Anal Chem ; 91(4): 2932-2938, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30650967

RESUMO

A complicated relationship between the active small molecules exists in cells. On the organelle level, active small molecules also play an important role in the maintenance of organelle functions and roles. To investigate the relationship of biomolecules in subcellular, it is necessary and critical to develop molecular tools that can track two kinds of associated biomolecules within organelles with multiple fluorescence signals. However, this is still an unmet challenge up to date. Herein, we present the first single-fluorescent probe (Lyso-HA-HS) that can detect oxidative (HOCl) and reductive (H2S) substances within an organelle (lysosomes) with multiresponse signals. The reactions of the new probe with H2S and HOCl simultaneously result in the blue and red channels emissions, respectively, providing different signal responses to the oxidative and reductive substances in the cellular lysosomes. Using a single fluorescent probe, we first achieved dual-channel imaging of the endogenous hypochlorous acid and hydrogen sulfide, respectively, in the lysosomes in the living cells. Moreover, the highly desirable attributes of the probe Lyso-HA-HS (such as high selectivity, good membrane-permeability, and lysosome enrichment ability) may enable it to be used in revealing the relationship of HOCl and H2S in lysosomes.


Assuntos
Corantes Fluorescentes/química , Sulfeto de Hidrogênio/análise , Ácido Hipocloroso/análise , Lisossomos/química , Animais , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Células RAW 264.7 , Espectrometria de Fluorescência/métodos
10.
J Mater Chem B ; 12(14): 3436-3444, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38497466

RESUMO

ONOO-, a bioactive molecule, plays a critical role in inflammation-related signaling pathways and pathological mechanisms. Numerous studies have established a direct correlation between elevated ONOO- levels and tumor progression. Therefore, investigating ONOO- levels in inflammation and tumors is of utmost importance. Fluorescence imaging presents a highly sensitive, non-invasive, easily operable, selective, and efficient method for ONOO- detection in situ. In this study, we designed and synthesized a rhodamine-based probe, NRho, which effectively identifies tumors, inflammatory cells, tissues, and organs by detecting ONOO- content. The synthesis process of NRho is simple, yielding a probe with favorable spectral characteristics and rapid response. Our cell imaging analysis has provided novel insights, revealing distinct ONOO- levels among different types of cancer cells, with hepatocellular carcinoma cells exhibiting higher ONOO- content than the others. This observation marks the proposal of such variations in ONOO- levels across cancer cell types. Furthermore, our study has showcased the practicality of our probe in live organ imaging, enabling the identification of tumors from living organs within a brief 5-minute incubation period. Additionally, our findings highlight the rapid detection capability of the probe NRho in various tissue samples, effectively identifying inflammation. This research holds important promise in advancing biomedical research and clinical diagnosis.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/análise , Rodaminas , Células HeLa , Inflamação/diagnóstico por imagem
11.
J Ethnopharmacol ; : 118507, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945467

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lablab Semen Album (lablab), the white and dried mature fruit of Lablab purpureus in the Lablab genus of the Fabaceae family, is a renowned traditional medicinal herb with a long history of use in China. In Chinese medicine, lablab is often combined with other drugs to treat conditions such as weak spleen and stomach, loss of appetite, loose stools, excessive leucorrhoea, summer dampness and diarrhea, chest tightness, and abdominal distension. MATERIALS AND METHODS: Comprehensive information on lablab was gathered from databases including Web of Science, Science Direct, Google Scholar, Springer, PubMed, CNKI, Wanfang, and ancient materia medica. RESULTS: Lablab, a member of the lentil family, thrives in warm and humid climates, and is distributed across tropical and subtropical regions worldwide. Traditionally, lablab is used to treat various ailments, such as spleen and stomach weakness, loss of appetite, and diarrhea. Phytochemical analyses reveal that lablab is a rich source of triterpenoid saponins, glucosides, volatile oils, polysaccharides, and amino acids. Lablab extracts exhibit diverse biological activities, including hypolipidemic, hypoglycemic, immunomodulatory, antioxidant, hepatoprotective, antitumoral, antiviral properties, and more. Besides its medicinal applications, lablab is extensively used in the food industry due to its high nutrient content. Additionally, the quality of lablab can be regulated by determining the levels of key chemical components pivotal to its medicinal effects, ensuring the herb's overall quality. CONCLUSION: Lablab is a promising medicinal and edible plant ingredient with diverse pharmacological effects, making it a valuable ingredient for food, pharmaceuticals, and animal husbandry. However, it has inherent toxicity if not properly prepared. Additionally, some traditional uses and pharmacological activities lack scientific validation due to incomplete methods, unclear results, and insufficient clinical data. Thus, further in vivo and in vitro studies on its pharmacology, pharmacokinetics, and toxicology, along with clinical efficacy evaluations, are needed to ensure lablab's safety and effectiveness. As an important traditional Chinese medicine, lablab deserves more attention.

12.
J Mater Chem B ; 11(11): 2389-2396, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853656

RESUMO

Aging is an inevitable biological process, characterized by a general decline in the quality of all physiological functions and reactions involving all organs and tissues of the body. Oxidative stress is considered to be the main cause of aging, which may be caused by active nitrogen substances. ONOO- is one of the important active nitrogen substances. Therefore, detecting the changes of ONOO- in senescent cells is of great significance for the study of senescence. However, the study of ONOO- in senescent cells is not deep enough. Here, we designed and synthesized a fluorescent probe FLASN based on flavonol, which integrates ONOO- detection and aging treatment. Our probe FLASN was prepared by a simple synthesis process and was shown to have excellent spectral characteristics. Meanwhile, the results of bioimaging showed that the probe FLASN could detect endogenous/exogenous ONOO- in cells and in vivo, and could reduce the production of ONOO- in cells and in vivo stimulated by metformin. It is worth noting that for the first time, the change of ONOO- in senescent cells and in vivo was detected, and the therapeutic effect of flavonol on senescent cells and in vivo was confirmed, by using the probe FLASN.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Animais , Camundongos , Corantes Fluorescentes/farmacologia , Células RAW 264.7 , Estresse Oxidativo , Senescência Celular
13.
Front Plant Sci ; 14: 1207518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389289

RESUMO

With the continuous change of global climate, the frequency of low-temperature stress (LTS) in spring increased greatly, which led to the increase of wheat yield decline. The effects of LTS at booting on grain starch synthesis and yield were examined in two wheat varieties with differing low-temperature sensitivities (insensitive variety Yannong 19 and sensitive variety Wanmai 52). A combination of potted and field planting was employed. For LTS treatment at booting, the wheat plants were placed in a climate chamber for 24 h at -2°C, 0°C or 2°C from 19:00 to 07:00 then 5°C from 07:00 to 19:00. They were then returned to the experimental field. The effects of flag leaf photosynthetic characteristics, the accumulation and distribution of photosynthetic products, enzyme activity related to starch synthesis and relative expression, the starch content, and grain yield were determined. LTS at booting caused a significant reduction in the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) of the flag leaves at filling. The development of starch grains in the endosperm is also hindere, there are obvious equatorial grooves observed on the surface of the A-type starch granules, and a reduction in the number of B-type starch granules. The abundance of 13C in the flag leaves and grains decreased significantly. LTS also caused a significant reduction in translocation amount of pre-anthesis stored dry matte from vegetative organs to grains and amount of post-anthesis transfer of accumulated dry matte into grains, and the distribution rate of dry matter in the grains at maturity. The grain filling time was shortened, and the grain filling rate decreased. A decrease in the activity and relative expression of enzymes related to starch synthesis was also observed, with a decrease in the total starch content. As a result, a decrease in the grain number per panicle and 1000-grain weight were also observed. These findings highlight the underlying physiological cause of decreased starch content and grain weight after LTS in wheat.

14.
J Hazard Mater ; 457: 131742, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37320897

RESUMO

SO2 can noticeably impact the control of high toxic selenium emissions from flue gas by CaO. Surprisingly, our experiments showed that under certain conditions, SO2 can promote selenium capture by CaO, rather than hinder it. To elucidate the underlying mechanism, a combination of theoretical calculations and experiments was conducted. Thermodynamic equilibrium analysis revealed that gaseous SO2 and solid Ca-S reaction products can promote SeO2 converting to SeO/Se0. The Ca-S products facilitated greater SeO2 conversion compared to SO2. Experimental results demonstrated that selenium adsorption capacity of incompletely sulfurized CaO (CaO with pre-adsorbed SO2) was higher than that of completely sulfurized CaO (Ca-S products), highlighting the importance of adsorption sites of CaO. Density functional theory calculations showed that the pre-adsorbed SO2 hardly affected selenium adsorption energy on the SO2/CaO surface, while completely sulfurized CaO had low selenium adsorption energy, explaining the experimental phenomenon and proving necessary of CaO. Additionally, SeO/Se0 had higher adsorption energy on CaO than SeO2. Overall, the promotion of SO2 on selenium adsorption was primarily affected by two factors: 1) sulfur facilitating SeO2 conversion to SeO/Se0 which can be adsorbed more easily by CaO; 2) sufficient adsorption sites on CaO surface existing for SeO/Se0 adsorption, despite co-adsorption with sulfur.

15.
Int J Biol Macromol ; 253(Pt 2): 126767, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37703981

RESUMO

Based on the assumption that protein could be removed by the combined mechanism of alkaline induced degradation and strong hydrogen bond interactions of deep eutectic solvents (DESs), ß-chitins were successfully prepared from squid pens by using alkaline DESs formed by potassium carbonate and glycerol. The chemical structures of the DESs were investigated by 1H nuclear magnetic resonance (1H NMR), attenuated total reflection Fourier transform infrared (ATR-FTIR) and molecular modeling, and the physicochemical property of the prepared ß-chitins were characterized. The preparation yields was about 32 %, and DESs with K2CO3/glycerol of 1/10 could be reused for three times while maintaining high preparation yields (31 %-32 %) and degree of deacetylation of 66.9 %-76.9 %. The mechanisms of deproteinization and demineralization by the alkaline DESs were proposed to follow the degradation and dissolution steps, and proteins and minerals were removed from squid pens through the synergistic actions of alkaline degradation and hydrogen bonding interactions. This alkaline DESs are promising to be used as a green and efficient approach for commercial production of ß-chitin.


Assuntos
Quitina , Glicerol , Animais , Glicerol/química , Quitina/química , Solventes/química , Decapodiformes , Solventes Eutéticos Profundos
16.
Front Nutr ; 10: 1139006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908905

RESUMO

Objectives: We investigated the protective effect of Rehmannia glutinosa oligosaccharides (RGO) on lipopolysaccharide (LPS)-induced intestinal inflammation and barrier injury among mice. Methods: RGO is prepared from fresh rehmannia glutinosa by water extraction, active carbon decolorization, ion exchange resin impurity removal, macroporous adsorption resin purification, and decompression drying. LPS could establish the model for intestinal inflammation and barrier injury in mice. Three different doses of RGO were administered for three consecutive weeks. Then the weight, feces, and health status of the mice were recorded. After sacrificing the mice, their colon length and immune organ index were determined. The morphological changes of the ileum and colon were observed using Hematoxylin-eosin (H&E) staining, followed by measuring the villus length and recess depth. RT-qPCR was utilized to detect the relative mRNA expression of intestinal zonula occludens-1 (ZO-1) and occludin. The expression of inflammatory factors and oxidation markers within ileum and colon tissues and the digestive enzyme activities in the ileum contents were detected using ELISA. The content of short-chain fatty acids (SCFAs) in the colon was determined with GC. The gut microbial composition and diversity changes were determined with 16S-rRNA high-throughput sequencing. The association between intestinal microorganisms and SCFAs, occludins, digestive enzymes, inflammatory factor contents, and antioxidant indexes was also analyzed. Results: RGO significantly increased the weight, pancreatic index, thymus index, and colon length of mice compared with the model group. Moreover, it also improved the intestinal tissue structure and increased the expression of intestinal barrier-related junction proteins ZO-1 and Occludin. The contents of IL-6, IL-17, IL-1ß, and TNF-α in the intestinal tissues of mice were significantly reduced. Additionally, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were elevated. In contrast, the malondialdehyde (MDA) content decreased. Trypsin and pancreatic lipase activities in the ileum enhanced, and the SCFA contents such as acetic acid, propionic acid, and butyric acid in the colon increased. The study on intestinal flora revealed that RGO could enhance the abundance of intestinal flora and improve the flora structure. After RGO intervention, the relative abundance of Firmicutes, Lactobacillus, and Akkermania bacteria in the intestinal tract of mice increased compared with the model group, while that of Actinomycetes decreased. The intestinal microbiota structure changed to the case, with probiotics playing a dominant role. The correlation analysis indicated that Lactobacillus and Ackermann bacteria in the intestinal tract of mice were positively associated with SCFAs, Occludin, ZO-1, pancreatic amylase, SOD, and CAT activities. Moreover, they were negatively correlated with inflammatory factors IL-6, IL-17, IL-1ß, and TNF-α. Conclusions: RGO can decrease LPS-induced intestinal inflammation and intestinal barrier injury in mice and protect their intestinal function. RGO can ameliorate intestinal inflammation and maintain the intestinal barrier by regulating intestinal flora.

17.
Anal Chim Acta ; 1221: 340104, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934349

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) is only related to the molecular structure and energy level distribution of the probe, not to the fluorescence intensity. It is an efficient imaging method, because it is not susceptible to interference from the internal environment of biological samples. Diabetes, as a systemic metabolic disease, causes various degrees of inflammation in organs and tissues. As we all know, inflammation of organ and tissue will affect cellular viscosity increases. In this work, a new amphiphilic molecular probe YF-V with a stable structure, good selectivity, fluorescence lifetime response and low cytotoxicity was designed. Under the condition of high viscosity, the rotation of the rotor and the twisting intramolecular charge transfer (TICT) mechanism were inhibited, leading to the extension of the fluorescence lifetime. In the cellular level, YF-V could sensitively detect the dynamic viscosity changes of cells induced by glucose through FLIM. Meanwhile, YF-V is also successfully applied to observe the difference in viscosity between the tissues and organs of diabetic mice and normal mice, and take lead in the detection of organ damage in diabetic mice with different disease durations. This provides an efficient and intuitive method for evaluating organ damage and early diagnosis in diabetes.


Assuntos
Diabetes Mellitus Experimental , Corantes Fluorescentes , Animais , Fluorescência , Corantes Fluorescentes/química , Inflamação/diagnóstico por imagem , Camundongos , Microscopia de Fluorescência/métodos , Viscosidade
18.
Anal Methods ; 14(44): 4531-4536, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36310524

RESUMO

Improper use of N2H4 will cause serious harm to the environment. Inhalation or skin contact with N2H4 will also cause a variety of diseases for humans and animals. Herein, a fluorescent probe (HFOAc) for the detection of N2H4 in solution, steam and the biological environment has been designed and synthesized.


Assuntos
Corantes Fluorescentes , Vapor , Animais , Humanos , Hidrazinas
19.
RSC Adv ; 12(55): 35616-35626, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545074

RESUMO

Fruit wine has certain health care functions, but fruit wine made from a single fruit or vegetable does not have a good enough color, flavor or nutrient composition. Therefore, this study used fresh carrot (Daucus carota subsp. sativus) and pomegranate (Punica granatum) as raw materials to explore the brewing process of carrot and pomegranate compound wine. The fermentation technology of the composite carrot and pomegranate wine was optimized by a single-factor experiment and Box-Behnken design (BBD), which provided a theoretical foundation for the fermentation of this wine. As per the results, the alcohol content of this composite carrot and pomegranate wine was 12.35% vol. under the optimum fermentation conditions of 28 °C initial temperature, 24% initial sugar content, and with the addition of 64 mg L-1 sulfur dioxide (SO2). In the fermented fruit and vegetable wine, a total of 30 aroma components were detected; 21 composites (such as bornyl acetate, caryophyllene and 3-(2-nitrophenylmethyl)-2-thiazolidinone) were newly generated. The relative content of alcohol flavor composites (such as propionic acid 2-methyl-3-hydroxy-2,2,4-trimethylpentan-1-ol, 2-methyl-2-ethyl-3-hydroxycyclohexyl propanoate and terpinene-4-ol) showed an upward trend, and the relative content of alkene components increased significantly after fermentation. The findings of this study provide an experimental foundation for optimizing fermentation technology and for improving the product quality of composite carrot and pomegranate wine.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119808, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33895656

RESUMO

Diseases caused by metabolic abnormalities, such as inflammation and fatty liver, which are characterized by high viscosity, so it is necessary to detect the change of viscosity in vivo and in vitro. Due to the advantages of high sensitivity, noninvasive detection, high selectivity and real-time imaging, fluorescence imaging has become an effective means to detect biological parameters of biomolecules and life systems. Therefore, we have prepared a red emitting fluorescent probe NBI-V with easy synthesis which can ensure that the probe can be developed for the widely used to detection of viscosity changes in vivo and in vitro. The probe NBI-V has good stability, high response times, selectivity, and good biocompatibility. As the viscosity of a water-glycerol system increased from 1.29 cp to 937.48 cp, the fluorescence of NBI-V was increased by about 77 times. Biological experiments showed that the probe NBI-V can target mitochondria, and the Pearson correlation coefficient was as high as 0.89. What's more, it can distinguish normal liver from fatty liver, and can detect the viscosity changes caused by inflammation in mice.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Animais , Fluorescência , Inflamação , Camundongos , Imagem Óptica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA