Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 12(8): e1006235, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27508411

RESUMO

Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.


Assuntos
Anormalidades do Olho/genética , Morfogênese/genética , N-Acetilglucosaminiltransferases/genética , Células Receptoras Sensoriais/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caenorhabditis elegans/genética , Cílios/genética , Cílios/metabolismo , Anormalidades do Olho/patologia , Genoma , Humanos , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação , Fenótipo , Células Receptoras Sensoriais/patologia , Síndrome de Walker-Warburg/genética , Rede trans-Golgi/genética
2.
J Invertebr Pathol ; 150: 82-87, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28919016

RESUMO

Wireworms (Coleoptera: Elateridae) are serious agricultural pests, with soil-dwelling larvae attacking subterranean tissues of crop plants and their fruit when in contact with the soil surface. Researchers collect wireworms for laboratory experiments to study their behaviour and test pest control agents but frequently lose them to Metarhizium Petch (Ascomycota: Hypocreales: Clavicipitaceae) infection. We found latent M. brunneum infection in 13-100% of live, asymptomatic Agriotes obscurus and A. lineatus wireworms acquired from agricultural fields and in wireworms maintained indoors, indicating its enzootic presence. M. brunneum DNA in the wireworms maintained indoors sometimes exceeded 250pg/ug total DNA (0.025% of whole-sample DNA mass). Expressed as copies of M. brunneum DNA/g, unadulterated soil levels of M. brunneum ranged from 4037 in agricultural field soil to 721,538 in soil harbouring a wireworm collection indoors, with the prevalence of latently-infected live wireworm specimens being directly related to soil levels. M. brunneum levels in live wireworms, when regressed against relative levels of 394 bacteria species in the microbiome, were proportionally related to only four: Pantoea agglomerans, Pandoraea pnomenusa, Nocardia pseudovaccinii, and Mycobacterium frederiksbergense. All four of these bacteria have previously been reported to express antimicrobial mechanisms. Consistent with occurrences of disease immunity reported for other pathogen-insect pairs, symbiotic bacteria may be suppressing M. brunneum-induced wireworm mortality. This would help explain why wireworms commonly succumb to infection after being brought into sterilized conditions, as well as the sometimes limited efficacy of M. brunneum when using it as a pest control agent in the field.


Assuntos
Besouros/microbiologia , Larva/microbiologia , Metarhizium , Micoses/veterinária , Controle Biológico de Vetores , Agricultura , Animais
3.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34550348

RESUMO

It has been estimated that 15%-30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III-V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes Essenciais , Humanos , Masculino , Mutação , Fenótipo , Sequenciamento Completo do Genoma
4.
G3 (Bethesda) ; 9(1): 135-144, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30420468

RESUMO

The Caenorhabditis elegans Gene Knockout Consortium is tasked with obtaining null mutations in each of the more than 20,000 open reading frames (ORFs) of this organism. To date, approximately 15,000 ORFs have associated putative null alleles. As there has been substantial success in using CRISPR/Cas9 in C. elegans, this appears to be the most promising technique to complete the task. To enhance the efficiency of using CRISPR/Cas9 to generate gene deletions in C. elegans we provide a web-based interface to access our database of guide RNAs (http://genome.sfu.ca/crispr). When coupled with previously developed selection vectors, optimization for homology arm length, and the use of purified Cas9 protein, we demonstrate a robust and effective protocol for generating deletions for this large-scale project. Debate and speculation in the larger scientific community concerning off-target effects due to non-specific Cas9 cutting has prompted us to investigate through whole genome sequencing the occurrence of single nucleotide variants and indels accompanying targeted deletions. We did not detect any off-site variants above the natural spontaneous mutation rate and therefore conclude that this modified protocol does not generate off-target events to any significant degree in C. elegans We did, however, observe a number of non-specific alterations at the target site itself following the Cas9-induced double-strand break and offer a protocol for best practice quality control for such events.


Assuntos
Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Edição de Genes , Recombinação Homóloga/genética , Animais , Deleção de Genes , Técnicas de Inativação de Genes , Marcação de Genes , Mutagênese/genética
5.
G3 (Bethesda) ; 8(5): 1425-1437, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29593072

RESUMO

The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p::elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p::elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82, was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p::elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10-4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Diferenciação Celular , Endoderma/metabolismo , Fatores de Transcrição GATA/genética , Genes Modificadores , Intestinos/citologia , Mutação/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/metabolismo , Testes Genéticos , Genótipo , Reprodutibilidade dos Testes , Análise de Sobrevida , Sequenciamento Completo do Genoma , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA