RESUMO
Anthraquinone electrode materials are promising candidates for lithium-ion batteries (LIBs) due to the abundance of anthraquinone and the high theoretical capacity, and good reversibility of the anthraquinone electrodes. However, the active anthraquinone materials are soluble in organic electrolytes, resulting in a sharp decay of capacity during the charge and discharge processes. Herein, we report on a two-dimensional calcium anthraquinone 2,3-dicarboxy metal-organic framework (2D CaAQDC MOF) fabricated using a simple hydrothermal method. The 2D CaAQDC MOF not only effectively inhibits the dissolution of active electrode substances into the electrolyte, but also promotes the diffusion of lithium ion into the pores of the MOF. When used as a cathode for the LIBs, the resulting CaAQDC electrode delivers a high specific capacity of ~100â mAh g-1 at a current density of 50â mA g-1 after 200 cycles, demonstrating its good cycle stability. Even at a high current density of 200â mA g-1 , the CaAQDC electrode exhibits a specific capacity of ~60â mAh g-1 . The fabricated 2D coordination polymers effectively restrains the dissolution of anthraquinone into the organic electrolyte and enhances the structural stability, which greatly improves the electrochemical performance of anthraquinone. These research results offer a rational molecular design strategy to address the dissolution of this and other active organic electrode materials.
RESUMO
Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.
Assuntos
Adipogenia , Galinhas , Glutationa Transferase , Regiões Promotoras Genéticas , Animais , Adipogenia/genética , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Tecido Adiposo/metabolismoRESUMO
To understand the differences in immune responses between early feathering (EF) and late feathering (LF) chickens after infection with avian leukosis virus, subgroup J (ALV-J), we monitored the levels of prolactin, growth hormone and the immunoglobulins IgG and IgM in the serum of LF and EF chickens for 8 weeks. Moreover, we analysed the expression of immune-related genes in the spleen and the expression of PRLR, SPEF2 and dPRLR in the immune organs and DF-1 cells by qRT-PCR. The results showed that ALV-J infection affected the expression of prolactin, growth hormone, IgG and IgM in the serum. Regardless of whether LF and EF chickens were infected with ALV-J, the serum levels of the two hormones and two immunoglobulins in EF chickens were higher than those in LF chickens (P < 0.05). However, the expression of immune-related genes in the spleen of positive LF chickens was higher than that in the spleen of positive EF chickens. In the four immune organs, PRLR and SPEF2 expression was also higher in LF chickens than in EF chickens. Furthermore, the dPRLR expression of positive LF chickens was higher than that of negative LF chickens. After infection with ALV-J, the expression of PRLR in DF-1 cells significantly increased. In addition, overexpression of PRLR or dPRLR in DF-1 cells promoted replication of ALV-J. These results suggested that the susceptibility of LF chickens to ALV-J might be induced by dPRLR.
Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Receptores da Prolactina , Animais , Leucose Aviária/imunologia , Vírus da Leucose Aviária/imunologia , Galinhas , Hormônio do Crescimento , Imunidade , Imunoglobulina G , Imunoglobulina M , Prolactina , Receptores da Prolactina/imunologiaRESUMO
To systematically investigate the effects of two methods used for laser-assisted hatching (LAH) on clinical outcomes after day 4 (D4) on frozen-embryo-transfer (FET) cycles. Data from 11471 infertile patients who underwent FET cycles between January 2014 and October 2018 was retrospectively analyzed. The 1410 patients who met the inclusion criteria were further categorized into two groups based on the hatching procedure used: the thinning laser-assisted hatching group (T-LAH, 716 patients), and the drilling laser-assisted hatching group (D-LAH, 694 patients). The baseline characteristics of the patients were consistent between the two groups. However, the rates of implantation and clinical pregnancy were significantly higher in the T-LAH group compared to the D-LAH group (32.73% vs. 29.09%, P < 0.01, and 50.98% vs. 43.95%, P < 0.01). The proportion of live birth was also higher in the T-LAH group, but the difference was insignificant (39.11% vs. 36.89%, P > 0.05). Moreover, there were no significant differences in rates of miscarriages, multiple pregnancies, ectopic pregnancies, preterm births, and congenital disabilities between the two groups. Nonetheless, significantly higher rates of implantation and pregnancy were reported in the T-LAH group compared to the D-LAH group among patients aged <35 years, patients with at least one previously failed cycle, and patients with an endometrial thickness of 8-10 mm. T-LAH is superior to D-LAH in improving clinical implantation and pregnancy outcomes in D4 FET, particularly in patients aged <35 years with at least one previously failed cycle or an endometrial thickness of 8-10 mm. The findings of this study provide theoretical support for clinical individualized diagnosis and treatment of patients with infertility.
Assuntos
Implantação do Embrião , Transferência Embrionária , Feminino , Humanos , Recém-Nascido , Lasers , Gravidez , Resultado da Gravidez , Estudos RetrospectivosRESUMO
BACKGROUND: Approximately 5.0-24.2% of colorectal cancers (CRCs) have inactivating mutations in SMAD4, making it one of the frequently mutated genes in CRC. We thus carried out a comprehensive system review and meta-analysis investigating the prognostic significance and clinicopathological features of SMAD4 gene mutation in CRC patients. METHODS: A detailed literature search was conducted in PubMed, Web of Science and Embase databases to study the relationship between SMAD4 mutations and the demographic and clinicopathological characteristics in CRC patients. The hazard ratios (HRs) with 95% confidence intervals (CI) were used to evaluate the effect of SMAD4 mutations on overall survival (OS) and progression-free survival (PFS)/recurrence-free survival (RFS). RESULTS: Ten studies enrolling 4394 patients were eligible for inclusion. Data on OS were available from 5 studies and data on PFS/RFS were available from 3 studies. Comparing SMAD4-mutated CRC patients with SMAD4 wild-type CRC patients, the summary HR for OS was 1.46 (95% CI 1.28-1.67, P = 0.001), the summary HR for PFS/RFS was 1.59 (95% CI 1.14-2.22, P = 0.006). In terms of clinicopathology parameters, 9 studies have data that can be extracted, SMAD4 mutations were associated with tumor location (odds ratio [OR] = 1.15, colon/rectum, 95% CI 1.01-1.31, P = 0.042), TNM stage (OR = 1.28, stage IV/I-III, 95% CI 1.03-1.58, P = 0.025), lymph node metastasis (OR = 1.42, N1 + N2/N0, 95% CI 1.20-1.67, P < 0.001), mucinous differentiation (OR = 2.23, 95% CI 1.85-2.70, P < 0.001) and rat sarcoma viral oncogene homolog (RAS) mutation status (OR = 2.13, 95% CI 1.37-3.34, P = 0.001). No connection was found with age, gender, tumor grade, microsatellite instability status and b-viral oncogene homolog B1 mutation status. Besides, publication bias was not observed in any study. CONCLUSIONS: This meta-analysis suggests that SMAD4 mutation was associated with OS, PFS/RFS, and clinicopathological parameters, including tumor site, disease stage, RAS status, lymph node metastasis and mucinous differentiation. Our meta-analysis indicated that SMAD4 mutations could predict the poor prognosis and aggressive clinicopathological characteristics of CRC. More large-sample cohort studies are needed to confirm this conclusion. Since SMAD4 mutations are closely related to RAS mutations, their relationship warrants further investigation.
Assuntos
Neoplasias Colorretais , Proteína Smad4 , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Humanos , Instabilidade de Microssatélites , Mutação , Prognóstico , Proteína Smad4/genéticaRESUMO
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, resulting in ovulation failure and other metabolic problems. However, the underlying mechanisms of it remain largely uncertain due to the complexity of clinical manifestations. This systemic disorder is involved in endocrine, metabolism, immune system and many organs, and few studies have explored peripheral blood transcriptome in patients with PCOS. We performed gene expression profiling of peripheral blood from 8 PCOS patients and eight healthy women with microarray. The significance analysis of microarray (SAM) software was employed to screen the differentially expressed genes (DEGs) and gene ontology (GO) was used for functional enrichment analysis. In total, 181 DEGs with fold-changes >2.0 and q-values <0.05 were identified between the two groups. Among them, 149 were up-regulated and 32 down-regulated in PCOS. Unsupervised clustering of expressed genes could readily differentiate PCOS from control. More importantly, inflammatory response pathway including 14 dysregulated genes was highly enriched in PCOS. Furthermore, 10 DEGs were validated using quantitative reverse-transcription PCR (qRT-PCR) assays. Our study provides independent evidence for the involvement of systemic inflammatory response in PCOS and it may facilitate a greater understanding of this complex disease.
Assuntos
Células Sanguíneas/metabolismo , Inflamação/genética , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/genética , Transcriptoma , Adulto , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inflamação/complicações , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Análise em Microsséries , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologiaRESUMO
OBJECTIVE: To investigate the influence of different methods of semen preservation and processing on sperm DNA integrity. METHODS: We collected semen samples from 100 normozoospermic male volunteers and, following homogeneous mixing, preserved them by means of snap freezing, slow freezing, or at the room temperature for 4 and 24 hours. Meanwhile we processed the semen by washing, swim-up, and density gradient centrifugation (DGC). Then we obtained the sperm DNA fragmentation index (DFI) by sperm chromatin dispersion test and measured total sperm motility and DFI after cultured for 24 hours following processing. RESULTS: The sperm DFIs after 4 hours of preservation by snap freezing, slow freezing, and at the room temperature were (27.3 ± 6.4)%, (26.9 ± 6.1)%, and (24.7 ± 6.8)%, respectively, and that after preserved at the room temperature for 24 hours was (35.6 ± 9.0)%, with statistically significant differences between the first three and the 24-hour room temperature preservation groups (P < 0.05) but not among the former three groups (P > 0.05). The sperm DFI was significantly higher in the samples processed by washing ([13.7 ± 2.0]%) than in those processed by swim-up ([9.1 ± 1.3]%) and DGC ([8.0 ± 2.5]%) (P < 0.05), and it was the lowest in the DGC group after 24-hour culture ([11.5 ± 4.2]%) as compared with the other groups (P < 0.05). CONCLUSION: Sperm DNA integrity is influenced by different semen preservation conditions and processing methods.
Assuntos
Fragmentação do DNA , Análise do Sêmen , Preservação do Sêmen/métodos , Centrifugação com Gradiente de Concentração , Humanos , Masculino , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/citologiaRESUMO
OBJECTIVE: To investigate the influence of the time interval from the end of semen processing to artificial intrauterine in semination with husband's sperm (AIH-IUI) on the rate of clinical pregnancy. METHODS: This study involved 191 AIH-IUI cycles with the same ovulation induction protocol. After Percoll density gradient centrifugation, we divided the sperm into four groups based on the incubation time: 0-19, 20-39, 40-59, and 60-80 min, and again into another four groups according to the total progressively motile sperm count (TPMC): (0-9), (10-20), (21-30), and > 30 x 10(6). We analyzed the correlation of the clinical pregnancy rate with the time interval from the end of sperm processing to AIH-IUI and with other influencing factors, such as maternal age, infertility duration, and semen quality. RESULTS: The rate of clinical pregnancy was significantly higher in the 20-39 min group (18.3%) than in the 0-19, 40-59, and 60-80 min groups (12.7, 11.4 and 9.1%) (all P < 0.05). The (10-20) x 10(6) group achieved a remarkably higher pregnancy rate (16.7%) than the (0-9), (21-30), and > 30 x 10(6) groups (0, 11.4, and 8.3%) (all P < 0.05). Logistic multivariate analysis showed that the rate of clinical pregnancy was decreased with the increased age of the women (OR 0.89, 95% CI 0.83-0.94) but significantly elevated in the 20-39 min group (OR 2.11, 95% CI 1.34-3.13) and of (10-20) x 10(6) group (OR 2.06, 95% CI 1.32-3.46). CONCLUSION: The time interval from the end of sperm processing to AIH-IUI is a most significant factor influencing the rate of clinical pregnancy of AIH-IUI.
Assuntos
Infertilidade/terapia , Inseminação Artificial Homóloga/estatística & dados numéricos , Taxa de Gravidez , Centrifugação com Gradiente de Concentração , Feminino , Humanos , Masculino , Gravidez , Sêmen , Análise do Sêmen , Contagem de Espermatozoides , Espermatozoides , Fatores de TempoRESUMO
In recent years, the transformer-based language models have achieved remarkable success in the field of extractive text summarization. However, there are still some limitations in this kind of research. First, the transformer language model usually regards the text as a linear sequence, ignoring the inherent hierarchical structure information of the text. Second, for long text data, traditional extractive models often focus on global topic information, which poses challenges in how they capturing and integrating local contextual information within topic segments. To address these issues, we propose a long text extractive summarization model that employs a local topic information extraction module and a text hierarchical extraction module to capture the local topic information and document's hierarchical structure information of the original text. Our approach enhances the ability to determine whether a sentence belongs to the summary. In this experiment, ROUGE score is used as the experimental evaluation index, and evaluates the model on three large public datasets. Through experimental validation, the model demonstrates superior performance in terms of ROUGE-1, ROUGE-2, and ROUGE-L scores compared to current mainstream summarization models, affirming the effectiveness of incorporating local topic information and document hierarchical structure into the model.
RESUMO
Ischemic stroke (IS) has attracted worldwide attention due to the high mortality and disability rate. Raw rhubarb (RR) is a traditional medicinal plant and whole-food that has been used in China for its various pharmacological activities, such as antioxidant and anti-inflammatory properties. Recent pharmacological research has shown the role of RR against IS, but its mechanism of action remains unclear, particularly in the context of the brain-gut axis. To address this gap in knowledge, the present study was conducted in the middle cerebral artery occlusion/reperfusion (MCAO/R) model with the aim of investigating the effects of RR on regulating the intestinal microbiota barrier and metabolism and thereby reducing inflammatory response so as to improve the IS. The results showed that pre-treatment of RR attenuated cerebral infarct area and inflammation response in MCAO rats. Furthermore, RR also improved intestinal barrier function, including the integrity and permeability of the intestinal barrier. Additionally, RR intervention significantly attenuated gut microbiota dysbiosis caused by ischemic stroke, especially the increased Firmicutes. Notably, the pseudo-germ-free (PGF) rats further demonstrated that the anti-stroke effect of RR might rely on intestinal microbiota. In addition, the UPLC/Q-Orbitrap-MS-Based metabolomics revealed the disrupted metabolic profiles caused by MCAO/R, and a total of 11 differential metabolites were modulated by RR administration, especially bile acids. Further correlation analysis and network pharmacology analysis also demonstrated a strong association between specific bacteria, such as Firmicutes and bile acids. In conclusion, our work demonstrated that RR could effectively ameliorate ischemic stroke by modulating the microbiota and metabolic disorders.
Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , AVC Isquêmico , Ratos Sprague-Dawley , Rheum , Animais , Rheum/química , Microbioma Gastrointestinal/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Ratos , Masculino , Eixo Encéfalo-Intestino/efeitos dos fármacos , Metaboloma , Infarto da Artéria Cerebral Média , Disbiose , Modelos Animais de DoençasRESUMO
Nanoplasmas induced by intense laser fields have attracted enormous attention due to their accompanied spectacular physical phenomena which are vigorously expected by the community of science and industry. For instance, the energetic electrons and ions produced in laser-driven nanoplasmas are significant for the development of compact beam sources. Nevertheless, effective confinement on the propagating charged particles, which was realized through magnetic field modulation and target structure design in big facilities, are largely absent in the microscopic regime. Here we introduce a reliable scheme to provide control on the emission direction of protons generated from surface ionization in gold nanoparticles driven by intense femtosecond laser fields. The ionization level of the nanosystem provides us a knob to manipulate the characteristics of the collective proton emission. The most probable emission direction can be precisely steered by tuning the excitation strength of the laser pulses. This work opens new avenue for controlling the ion emission in nanoplasmas and can vigorously promote the fields such as development of on-chip beam sources at micro-/nano-scales.
RESUMO
Anthraquinone (AQ) and its derivatives have been attracting more attention as promising electrode materials for lithium storage because of their high specific capacity, structural diversity, and environmental friendliness. The dissolution and poor electrical conductivity of AQ, however, limit its practical application. Here, a novel metal-organic coordination polymer with a one-dimensional (1D) chain ([C14H6O4Cu]n denoted as Cu-DHAQ; DHAQ, 1,5-dihydroxyl anthraquinone) and its composite with graphene (Cu-DHAQ/G; G, graphene) are developed by the introduction of graphene and copper ion into DHAQ. The fabricated polymer with a 1D chain not only well inhibits the dissolution of DHAQ in organic electrolytes but also facilitates lithium-ion insertion/extraction on carbonyl groups and shortens the migration path of lithium ions. Furthermore, the addition of the conductive network of graphene provides fast transfer rates of electrons. As a result, Cu-DHAQ/G delivers a high discharge capacity, long cycle life, and excellent rate capability. The lithium storage mechanism shows lithium ion insertion/extraction on two carbonyl groups of Cu-DHAQ in the range of 1.6-2.0 V and the redox reaction of Cu+/Cu2+ between 2.8 and 3.0 V, and Cu2+ and Cu+ coexist in the Cu-DHAQ/G electrode during the charge/discharge process. This study provides meaningful guidance to develop metal-organic coordination polymer electrodes for high-performance Li-ion batteries.
RESUMO
Body temperature (BT) has been utilized to assess patient outcomes across various diseases. However, the impact of BT on mortality in the intensive care unit (ICU) among patients with congestive heart failure (CHF) and diabetes mellitus (DM) remains unclear. We conducted a retrospective cohort study using data from the Medical Information Mart for Intensive Care (MIMIC)-IV data set. The primary outcome assessed was in-hospital mortality rates. BT was treated as a categorical variable in the analyses. The association between BT on ICU admission and in-hospital mortality was examined using multivariable logistic regression models, restricted cubic spline, and subgroup analysis. The cohort comprised 7063 patients with both DM and CHF (3135 females and 3928 males), with an average age of 71.5 ± 12.2 years. Comparative analysis of the reference group (Q4) revealed increased in-hospital mortality in Q6 and Q1 temperature groups, with fully adjusted odds ratios of 2.08 (95% confidence interval [CI]: 1.45-2.96) and 1.95 (95% CI: 1.35-2.79), respectively. Restricted cubic spline analysis demonstrated a U-shaped relationship between temperature on admission and mortality risk (p nonlinearity <0.001), with the nadir of risk observed at 36.8°C. The effect sizes and corresponding CIs below and above the threshold were 0.581 (95% CI: 0.434-0.777) and 1.674 (95% CI: 1.204-2.328), respectively. Stratified analyses further validated the robustness of this correlation. Our study establishes a nonlinear association between BT and in-hospital mortality in patients with both CHF and DM, with optimal suitable BT at 36.8°C. Further research is necessary to confirm this relationship.
RESUMO
Organic electrode materials face two outstanding issues in the practical applications in lithium-ion batteries (LIBs), dissolution and poor electronic conductivity. Herein, we fabricate a nanocomposite of an anthraquinone carboxylate lithium salt (LiAQC) and graphene to address the two issues. LiAQC is synthesized via a green and facile one-pot reaction and then ball-milled with graphene to obtain a nanocomposite (nr-LiAQC/G). For comparison, single LiAQC is also ball-milled to form a nanorod (nr-LiAQC). Together with pristine LiAQC, the three samples are used as cathodes for LIBs. Results show that good cycling performance can be obtained by introducing the -CO2Li hydrophilic group on anthraquinone. Furthermore, the nr-LiAQC/G demonstrates not only a high initial discharge capacity of 187 mAh g-1 at 0.1 C but also good cycling stability (reversible capacity: â¼165 mAh g-1 at 0.1 C after 200 cycles) and good rate capability (the average discharge capacity of 149 mAh g-1 at 2 C). The superior electrochemical properties of the nr-LiAQC/G profit from graphene with high electronic conductivity, the nanorod structure of LiAQC shortening the transport distance for lithium ions and electrons, and the introduction of the -CO2Li hydrophilic group decreasing the dissolution of LiAQC in the electrolyte. Meanwhile, density functional theory calculations support the roles of graphene and -CO2Li groups. The fabrication is general and facile, ready to be extended to other organic electrode materials.
RESUMO
Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.
RESUMO
OBJECTIVE: To analyze the target and potential mechanism of Scutellaria baicalensis (SB) in the treatment of HCC based on bioinformatics, so as to provide suggestions for the diagnosis, treatment, and drug development of hepatocellular carcinoma (HCC). METHODS: The regulated gene targets of SB were screened by gene expression pattern clustering and differential analysis of gene expression data of HepG2 cells treated with SB at 0 h, 1 h, 3 h, 6 h, 12 h, and 24 h. The module genes related to HCC were identified by the weighted gene coexpression network analysis (WGCNA). KEGG and GO enrichment were used to analyze the molecular function and structure of the module, and GSEA was used to evaluate the different functional pathways between normal people and patients with HCC. Then, the module gene was used for univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to build a prognostic model. The protein-protein interaction network (PPI) was used to analyze the core genes regulated by SB (CGRSB) of the module, and the survival curve revealed the CGRSB impact on patient survival. The CIBERSORT algorithm combined with correlation analysis to explore the relationship between CGRSB and immune infiltration. Finally, the single-cell sequencing technique was used to analyze the distribution of CGRSB at the cellular level. RESULTS: SB could regulate 903 genes, of which 234 were related to the occurrence of HCC. The prognosis model constructed by these genes has a good effect in evaluating the survival of patients. KEGG and GO enrichment analysis showed that the regulation of SB on HCC mainly focused on some cell proliferation, apoptosis, and immune-related functions. GSEA enrichment analysis showed that these functions are related to the occurrence of HCC. A total of 24 CGRSB were obtained after screening, of which 13 were significantly related to survival, and most of them were unfavorable factors for patient survival. The correlation analysis of gene expression showed that most of CGRSB was significantly correlated with T cells, macrophages, and other functions. The results of single-cell analysis showed that the distribution of CGRSB in macrophages was the most. CONCLUSION: SB has high credibility in the treatment of HCC, such as CDK2, AURKB, RRM2, CENPE, ESR1, and PRIM2. These targets can be used as potential biomarkers for clinical diagnosis. The research also shows that the p53 signal pathway, MAPK signal pathway, apoptosis pathway, T cell receptor pathway, and macrophage-mediated tumor immunity play the most important role in the mechanism of SB in treating HCC.
RESUMO
A gold catalyzed formal intermolecular [2+3] cyclo-coupling of 1,3-enynes with phenols was developed to prepare dihydrobenzofuran derivatives with the addition of 2,6-dichloropyridine N-oxide, in which, a highly ortho-selective phenol SEAr functionalization was achieved by using 1,3-enynes as α-oxo vinyl gold carbenoid surrogates.
RESUMO
The objective of the present study was to investigate the differences in the proteomic profiles of sperm from infertile males with severe oligoasthenoteratozoospermia requiring intracytoplasmic sperm injection (ICSI) and normal control sperm from fertile males. Isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry was performed for identifying proteins in the sperm of infertile and fertile males. Differentially expressed proteins were analyzed via the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases through the Database for Annotation, Visualization, and Integrated Discovery, and protein-protein networks were produced using the Search Tool for Retrieval of Interacting Genes. Immunofluorescence and western blotting verified the differential expression of Y-box-binding protein 1(YBX1), adenylate kinase 1 (AK1), and aconitase 2, mitochondrial (ACO2) proteins. Altogether, 3444 proteins were identified in the sperm of infertile and fertile males, and 938 were differentially expressed between the two groups. Pairwise comparisons revealed that 226 and 712 proteins were significantly upregulated and downregulated in infertile males, respectively. These proteins were significantly enriched in metabolic pathways as per KEGG enrichment analysis. YBX1 expression was upregulated in the sperm heads of patients requiring ICSI treatment, whereas AK1 and ACO2, which are critical enzymes involved in energy metabolism, were downregulated in the sperm tails of the same patients. This result indicates that metabolism may have a crucial role in maintaining normal sperm function. Overall, our results provide insights that will further help in investigating the pathogenic mechanisms of infertility and possible therapeutic strategies.
Assuntos
Infertilidade Masculina , Proteômica , Humanos , Infertilidade Masculina/metabolismo , Masculino , Redes e Vias Metabólicas , Injeções de Esperma Intracitoplásmicas , Espermatozoides/metabolismoRESUMO
Mutations in KRAS (codon 12/13), NRAS, BRAF V600E, and amplification of ERBB2 and MET account for 70-80% of anti-epidermal growth factor receptor (EGFR) monoclonal antibody primary resistance. However, the list of anti-EGFR monoclonal antibody primary resistance biomarkers is still incomplete. Herein, we report a case of wild-type RAS/BRAF metastatic colorectal cancer (CRC) with resistance to anti-EGFR monoclonal antibody and chemotherapy. Initially, mutation detection in postoperative tumor tissue by using amplification-refractory mutation system polymerase chain reaction indicated wild-type RAS/BRAF without point mutations, insertion deletions, or fusion mutations. Therefore, we recommended combined therapy of cetuximab and FOLFIRI after failure of platinum-based adjuvant chemotherapy, but the disease continued to progress. Next generation sequencing analysis of the postoperative tumor tissue revealed that KRAS copy number was increased and detected SMAD4, RNF43, and PREX2 mutations. This is the first case of advanced CRC with increased copy numbers of KRAS resistant to cetuximab and chemotherapy, which results in poor patient survival, and other mutated genes may be associated with the outcomes. Our findings indicate KRAS copy number alterations should also be examined, especially with anti-EGFR monoclonal antibody therapy in CRC, since it may be related with the primary resistance to these drugs.
RESUMO
In this study, we aimed to explore the potential differences in proteomic profiles from the testicular tissue of azoospermatic men with impaired spermatogenesis and normal spermatogenesis. Isobaric tags for relative and absolute quantitation (iTRAQ) labeled technology and LC-MS/MS technology were used to identify differentially expressed proteins. Potential functions of differentially expressed proteins were predicted using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG). Immunohistochemistry (IHC) and western blot (WB) were used to verify the differentially expressed proteins. A protein-protein interaction (PPI) network was built to outline the regulatory network of differentially expressed proteins. A total of 3,945 proteins were identified in men with normal and impaired spermatogenesis. Of these, 116 proteins were differentially expressed in men with impaired spermatogenesis: 39 were upregulated and 77 were downregulated. Furthermore, we found that these differentially expressed proteins were mainly involved in the cellular component, which may be mainly associated with the spliceosome, ribosome, and thyroid hormone synthesis signaling pathways. The spliceosome- and ribosome-associated proteins YBX1, FBL, and HNRNPU were downregulated. And the proteomic profile of testicular tissue in men with impaired spermatogenesis is different from that of men with normal spermatogenesis. For this reason, differentially expressed proteins such as YBX1, FBL and HNRNPU might be involved in the pathology of spermatogenesis dysfunction.Abbreviations: iTRAQ: Isobaric tags for relative and absolute quantitation;GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; IHC: Immunohistochemistry; WB: Western blot; PPI: Protein-protein interaction; ICSI: Intracytoplasmic sperm injection; BP: Biological process; CC: Cellular components; MF: Molecular function; snoRNA: Small nucleolar RNA; snRNA: Small nuclear RNA; LC-MS/MS: Liquid chromatography and MS/MS analysis; BSA: Bovine serum albumin; SD: Spermatogenic dysfunction; micro-TESE: Testicular microscopic sperm extraction.