Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33026137

RESUMO

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Assuntos
Gases de Efeito Estufa , Atmosfera , Dióxido de Carbono/análise , Ecossistema , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Reprodutibilidade dos Testes , Respiração , Solo
2.
Fundam Res ; 3(2): 151-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38932928

RESUMO

Hydrological changes under climate warming drive the biogeomorphic succession of wetlands and may trigger substantial carbon loss from the carbon-rich ecosystems. Although many studies have explored the responses of wetland carbon emissions to short-term hydrological change, it remains poorly understood how the carbon cycle evolves with hydrology-driven wetland succession. Here, we used a space-for-time approach across hydrological gradients on the Tibetan Plateau to examine the dynamics of ecosystem carbon fluxes (carbon dioxide (CO2) and methane (CH4)) and soil organic carbon pools during alpine wetland succession. We found that the succession from mesic meadow to fen changed the seasonality of both CO2 and CH4 fluxes, which was related to the shift in plant community composition, enhanced regulation of soil hydrology and increasing contribution of spring-thaw emission. The paludification caused a switch from net uptake of gaseous carbon to net release on an annual timescale but produced a large accumulation of soil organic carbon. We attempted to attribute the paradox between evidence from the carbon fluxes and pools to the lateral carbon input and the systematic changes of historical climate, given that the wetlands are spatially low-lying with strong temporal climate-carbon cycle interactions. These findings demonstrate a systematic change in the carbon cycle with succession and suggest that biogeomorphic succession and lateral carbon flows are both important for understanding the long-term dynamics of wetland carbon footprints.

3.
Sci Total Environ ; 881: 163204, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044342

RESUMO

Tropical primary forests are being destroyed at an alarming rate and converted for other land uses which is expected to greatly influence soil carbon (C) cycling. However, our understanding of how tropical forest conversions affect the accumulation of compounds in soil functional C pools remains unclear. Here, we collected soils from primary forests (PF), secondary forests (SF), oil-palm (OP), and rubber plantations (RP), and assessed the accumulation of plant- and microbial-derived compounds within soil organic carbon (SOC), particulate (POC) and mineral-associated (MAOC) organic C. PF conversion to RP greatly decreased SOC, POC, and MAOC concentrations, whereas conversion to SF increased POC concentrations and decreased MAOC concentrations, and conversion to OP only increased POC concentrations. PF conversion to RP decreased lignin concentrations and increased amino sugar concentrations in SOC pools which increased the stability of SOC, whereas conversion to SF only increased the lignin concentrations in POC, and conversion to OP just increased lignin concentrations in POC and decreased it in MAOC. We observed divergent dynamics of amino sugars (decrease) and lignin (increase) in SOC with increasing SOC. Only lignin concentrations increased in POC with increasing POC and amino sugars concentrations decreased in MAOC with increasing MAOC. Conversion to RP significantly decreased soil enzyme activities and microbial biomasses. Lignin accumulation was associated with microbial properties, whereas amino sugar accumulation was mainly associated with soil nutrients and stoichiometries. These results suggest that the divergent accumulation of plant- and microbial-derived C in SOC was delivered by the distribution and original composition of functional C pools under forest conversions. Forest conversions changed the formation and stabilization processes of SOC in the long run which was associated with converted plantations and management. The important roles of soil nutrients and stoichiometry also provide a natural-based solution to enhance SOC sequestration via nutrient management in tropical forests.


Assuntos
Carbono , Solo , Lignina , Florestas , Biomassa , Borracha
4.
Sci Rep ; 12(1): 14320, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995806

RESUMO

In this study, we examined the abiotic and biotic factors controlling the dynamics of soil respiration (Rs) while considering the zonal distribution of plant species in a coastal dune ecosystem in western Japan, based on periodic Rs data and continuous environmental data. We set four measurement plots with different vegetation compositions: plot 1 on bare sand; plot 2 on a cluster of young Vitex rotundifolia seedlings; plot 3 on a mixture of Artemisia capillaris and V. rotundifolia; and plot 4 on the inland boundary between the coastal vegetation zone and a Pinus thunbergii forest. Rs increased exponentially along with the seasonal rise in soil temperature, but summer drought stress markedly decreased Rs in plots 3 and 4. There was a significant positive correlation between the natural logarithm of belowground plant biomass and Rs in autumn. Our findings indicate that the seasonal dynamics of Rs in this coastal dune ecosystem are controlled by abiotic factors (soil temperature and soil moisture), but the response of Rs to drought stress in summer varied among plots that differed in dominant vegetation species. Our findings also indicated that the spatial dynamics of Rs are mainly controlled by the distribution of belowground plant biomass and autotrophic respiration.


Assuntos
Ecossistema , Solo , Japão , Plantas , Respiração , Estações do Ano
5.
Sci Total Environ ; 688: 479-485, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31254813

RESUMO

Soil respiration (Rs) is the largest carbon (C) flux from terrestrial ecosystems to the atmosphere. Predictions of Rs and associated feedback to climate change remain largely uncertain, in part due to the high temporal heterogeneity of temperature sensitivity (apparent Q10) of Rs under a changing climate. Therefore, it is of critical importance to provide better insight into how Q10 varies across multiple temporal scales. We investigated the diurnal, seasonal, and annual variabilities in the Q10 of Rs using continuous Rs measurements (at hourly intervals) over six growing seasons in a mature temperate larch plantation in North China. We found that night-time values of Q10 were slightly lower than daytime values. Large seasonal and annual fluctuations of Q10 were observed, as illustrated by high coefficients of variation of 15.0% and 21.8%, respectively. The higher Q10 in spring and autumn were primarily regulated by fine root growth and higher soil moisture after snow melt in spring, and leaf senescence in autumn. Lower Q10 in summer may have been caused by limitations in substrate availability and microbial activity resulting from drought, which also caused a decoupling of Rs from soil temperature in summer. Furthermore, a bivariate nonlinear model incorporating both soil temperature and soil moisture best explained Q10 variability. Generally, lower soil temperature and higher soil moisture lead to higher values of Q10, indicating that climate warming could exert a negative effect on Q10, partially offsetting the warming-induced increase in soil C loss. We provide long-term field experimental evidence that it would be inappropriate to estimate Rs on a multiyear scale using a fixed Q10 value or a value obtained from one season and/or one year. Thus, we emphasize the importance of incorporating the seasonal and annual heterogeneities of Q10 into C cycle model simulations under future climate change scenarios.


Assuntos
Agricultura , Florestas , Microbiologia do Solo , Solo/química , Temperatura , Monitoramento Ambiental
6.
Sci Data ; 4: 170026, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291228

RESUMO

This paper describes a project for evaluation of global warming's impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration.

7.
Sci Rep ; 7: 41025, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145459

RESUMO

Savanna ecosystems play a crucial role in the global carbon cycle. However, there is a gap in our understanding of carbon fluxes in the savanna ecosystems of Southeast Asia. In this study, the eddy covariance technique (EC) and the biometric-based method (BM) were used to determine carbon exchange in a savanna ecosystem in Southwest China. The BM-based net ecosystem production (NEP) was 0.96 tC ha-1 yr-1. The EC-based estimates of the average annual gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem carbon exchange (NEE) were 6.84, 5.54, and -1.30 tC ha-1 yr-1, respectively, from May 2013 to December 2015, indicating that this savanna ecosystem acted as an appreciable carbon sink. The ecosystem was more efficient during the wet season than the dry season, so that it represented a small carbon sink of 0.16 tC ha-1 yr-1 in the dry season and a considerable carbon sink of 1.14 tC ha-1 yr-1 in the wet season. However, it is noteworthy that the carbon sink capacity may decline in the future under rising temperatures and decreasing rainfall. Consequently, further studies should assess how environmental factors and climate change will influence carbon-water fluxes.


Assuntos
Sequestro de Carbono , Ecossistema , Pradaria , Biometria , Bioestatística , China , Chuva , Estações do Ano , Temperatura
8.
Sci Rep ; 6: 35563, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748424

RESUMO

To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C-1. Although the warming effect varied among the years, it averaged 9.4% °C-1 over 6 years, which was close to the value of 10.1 to 10.9% °C-1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.

9.
Sci Rep ; 6: 21561, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26900028

RESUMO

As heterotrophic respiration (R(H)) has great potential to increase atmospheric CO2 concentrations, it is important to understand warming effects on R(H) for a better prediction of carbon-climate feedbacks. However, it remains unclear how R(H) responds to warming in subtropical forests. Here, we carried out trenching alone and trenching with warming treatments to test the climate warming effect on R(H) in a subtropical forest in southwestern China. During the measurement period, warming increased annual soil temperature by 2.1 °C, and increased annual mean R(H) by 22.9%. Warming effect on soil temperature (WE(T)) showed very similar pattern with warming effect on R(H) (WE(RH)), decreasing yearly. Regression analyses suggest that WE(RH) was controlled by WE(T) and also regulated by the soil water content. These results showed that the decrease of WE(RH) was not caused by acclimation to the warmer temperature, but was instead due to decrease of WE(T). We therefore suggest that global warming will accelerate soil carbon efflux to the atmosphere, regulated by the change in soil water content in subtropical forests.

10.
Sci Rep ; 6: 26901, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264386

RESUMO

Predicted future shifts in the magnitude and frequency (larger but fewer) of precipitation events and enhanced nitrogen (N) deposition may interact to affect grassland productivity, but the effects of N enrichment on the productivity response to individual precipitation events remain unclear. In this study, we quantified the effects of N addition on the response patterns of gross primary productivity (GPP) to individual precipitation events of different sizes (Psize) in a temperate grassland in China. The results showed that N enrichment significantly increased the time-integrated amount of GPP in response to an individual precipitation event (GPPtotal), and the N-induced stimulation of GPP increased with increasing Psize. N enrichment rarely affected the duration of the GPP response, but it significantly stimulated the maximum absolute GPP response. Higher foliar N content might play an important role in the N-induced stimulation of GPP. GPPtotal in both the N-addition and control treatments increased linearly with Psize with similar Psize intercepts (approximately 5 mm, indicating a similar lower Psize threshold to stimulate the GPP response) but had a steeper slope under N addition. Our work indicates that the projected larger precipitation events will stimulate grassland productivity, and this stimulation might be amplified by increasing N deposition.


Assuntos
Nitrogênio/química , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Chuva , China , Pradaria , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Poaceae/metabolismo , Estações do Ano
11.
Tree Physiol ; 23(12): 825-32, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12865248

RESUMO

We developed a fast-response multi-chamber system for measuring soil-surface CO2 efflux (Fc). The chambers (90 x 90 x 50 cm, L x W x H) had lids that opened and closed automatically, and were connected in parallel to a single CO2 analyzer equipped with a 16-channel gas sampler. Between measurements the chamber lids were raised to allow precipitation and leaf litter to reach the enclosed soil surface. When a chamber was closed, it was ventilated with well-buffered ambient air (125 l min-1) that entered by an inlet on one chamber sidewall and exited through a large vent on the opposite sidewall. The pressure difference between the inside and outside of the chamber was less than 0.22 Pa. Two additional mixing fans maintained an air speed of 0.3 +/- 0.1 m s-1 at 20 cm above the soil surface. Air was withdrawn continuously from the inlets and outlets of each chamber, and fed sequentially to an infrared CO2 analyzer. With this system, we measured Fc in a 40-year-old temperate Pinus densiflora Sieb. & Zucc. forest from February 8 to May 30, 2001. Mean Fc increased steadily from 0.9 micro mol m-2 s-1 at the beginning of February to 4.6 micro mol m-2 s-1 by the end of May. There was a statistically significant correlation between Fc and surface soil temperature (r = 0.896; P < 0.0001), and the Q10 value was 2.8. Spatial variation of Fc was higher in the non-growing season than in the growing season. Measurements were not interrupted by either rain or snow.


Assuntos
Botânica/instrumentação , Dióxido de Carbono/análise , Solo/análise , Árvores/fisiologia , Botânica/métodos , Ecossistema , Pinus/fisiologia
12.
Environ Pollut ; 181: 81-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23838484

RESUMO

Comparing of different CH4 flux measurement techniques allows for the independent evaluation of the performance and reliability of those techniques. We compared three approaches, the traditional discrete Manual Static Chamber (MSC), Continuous Automated Chamber (CAC) and Eddy Covariance (EC) methods of measuring the CH4 fluxes in an alpine wetland. We found a good agreement among the three methods in the seasonal CH4 flux patterns, but the diurnal patterns from both the CAC and EC methods differed. While the diurnal CH4 flux variation from the CAC method was positively correlated with the soil temperature, the diurnal variation from the EC method was closely correlated with the solar radiation and net CO2 fluxes during the daytime but was correlated with the soil temperature at nighttime. The MSC method showed 25.3% and 7.6% greater CH4 fluxes than the CAC and EC methods when measured between 09:00 h and 12:00 h, respectively.


Assuntos
Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Metano/análise , Temperatura , Áreas Alagadas , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Solo/química , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA