Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26736-26746, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38015824

RESUMO

Afterglow materials-based biological imaging has promising application prospects, due to negligible background. However, currently available afterglow materials mainly include inorganic materials as well as some organic nanoparticles, which are difficult to translate to the clinic, resulting from non-negligible metabolic toxicity and even leakage risk of inorganic heavy metals. Although building small organic molecules could solve such obstacles, organic small molecules with afterglow ability are extremely scarce, especially with a sufficient renal metabolic capacity. To address these issues, herein, we designed water-soluble zwitterion Cy5-NF with renal metabolic capacity and afterglow luminescence, which relied on an intramolecular cascade reaction between superoxide anion (O2•-, instead of 1O2) and Cy5-NF to release afterglow luminescence. Of note, compared with different reference contrast agents, zwitterion Cy5-NF not only had excellent afterglow properties but also had a rapid renal metabolism rate (half-life period, t1/2, around 10 min) and good biocompatibility. Unlike prior afterglow nanosystems possessing a large size, for the first time, zwitterion Cy5-NF has achieved the construction of water-soluble renal metabolic afterglow contrast agents, which showed higher sensitivity and signal-to-background ratio in afterglow imaging than fluorescence imaging for the kidney. Moreover, zwitterion Cy5-NF had a longer kidney retention time in renal-failure mice (t1/2 more than 15 min). More importantly, zwitterion Cy5-NF can be metabolized very quickly even in severe renal-failure mice (t1/2 around 25-30 min), which greatly improved biosecurity. Therefore, we are optimistic that the O2•--mediated afterglow mechanism-based water-soluble zwitterion Cy5-NF is very promising for clinical application, especially rapid detection of kidney failure.


Assuntos
Insuficiência Renal , Superóxidos , Animais , Camundongos , Água , Meios de Contraste
2.
Angew Chem Int Ed Engl ; 62(37): e202305742, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37219959

RESUMO

Fluorescence imaging utilizing traditional organic fluorophores is extensively applied in both cellular and in vivo studies. However, it faces significant obstacles, such as low signal-to-background ratio (SBR) and spurious positive/negative signals, primarily due to the facile diffusion of these fluorophores. To cope with this challenge, orderly self-assembled functionalized organic fluorophores have gained significant attention in the past decades. These fluorophores can create nanoaggregates via a well-ordered self-assembly process, thus prolonging their residency time within cells and in vivo settings. The development of self-assembled-based fluorophores is an emerging field, and as such, in this review, we present a summary of the progress and challenges of self-assembly fluorophores, focusing on their development history, self-assembly mechanisms, and biomedical applications. We hope that the insights provided herein will assist scientists in further developing functionalized organic fluorophores for in situ imaging, sensing, and therapy.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Imagem Óptica/métodos
3.
Nat Commun ; 14(1): 1843, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012267

RESUMO

J-aggregation, an effective strategy to extend wavelength, has been considered as a promising method for constructing NIR-II fluorophores. However, due to weak intermolecular interactions, conventional J-aggregates are easily decomposed into monomers in the biological environment. Although adding external carriers could help conventional J-aggregates stabilize, such methods still suffer from high-concentration dependence and are unsuitable for activatable probes design. Besides, these carriers-assisted nanoparticles are risky of disassembly in lipophilic environment. Herein, by fusing the precipitated dye (HPQ) which has orderly self-assembly structure, onto simple hemi-cyanine conjugated system, we construct a series of activatable, high-stability NIR-II-J-aggregates which overcome conventional J-aggregates carrier's dependence and could in situ self-assembly in vivo. Further, we employ the NIR-II-J-aggregates probe HPQ-Zzh-B to achieve the long-term in situ imaging of tumor and precise tumor resection by NIR-II imaging navigation for reducing lung metastasis. We believe this strategy will advance the development of controllable NIR-II-J-aggregates and precise bioimaging in vivo.


Assuntos
Nanopartículas , Cirurgia Assistida por Computador , Corantes Fluorescentes/química , Nanopartículas/química , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA