Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Hepatol ; 67(4): 770-779, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28596109

RESUMO

BACKGROUND & AIMS: Macrophages play vital roles in chronic liver injury, and have been tested as a tool for cytotherapy in liver fibrosis. However, macrophages possess ontogenic and functional heterogeneities. Some subsets are pro-fibrotic, whereas others are anti-fibrotic. This study aimed to clarify which macrophage subset is efficient for cytotherapy in liver fibrosis and to elucidate the underlying mechanisms. METHODS: Liver fibrosis was induced in mice by carbon tetrachloride injection or bile duct ligation. Bone-marrow-derived macrophages (BMDMs) were polarized into M0, M1, or M2 macrophages, respectively. BMDMs were infused into mice through the tail vein at different stages of fibrogenesis. Fibrosis progression, hepatic cell populations, and related molecular changes were evaluated. RESULTS: Both M0 and M1 BMDMs significantly ameliorated liver fibrosis, but M1 exhibited stronger therapeutic effects than M0. M2 macrophages were not effective on liver fibrosis. M1 macrophages reduced the number and activation of hepatic stellate cells (HSCs), which could be attributed at least partly to increased HSC apoptosis. M1 macrophages enhanced the recruitment of endogenous macrophages into fibrotic liver, which displayed the phenotype of Ly6Clo restorative macrophages and produced matrix metalloproteinases (MMPs) and hepatic growth factor (HGF) to enhance collagen degradation and hepatocyte proliferation, respectively. M1 macrophages also increased the number of total and activated natural killer (NK) cells in the fibrotic liver, which released TNF-related apoptosis-inducing ligand (TRAIL), inducing HSC apoptosis. CONCLUSIONS: M1 macrophages, which modulate the immune microenvironment to recruit and modify the activation of endogenous macrophages and NK cells, are effective for cytotherapy in experimental liver fibrosis. Lay summary: M1 Bone marrow-derived macrophages (BMDMs) exhibit a stronger therapeutic effect by modulating the hepatic microenvironment to recruit and modify the activation of endogenous macrophages and natural killer (NK) cells, which likely lead to hepatic stellate cells (HSCs) apoptosis and hampered fibrogenesis.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Cirrose Hepática/terapia , Macrófagos/imunologia , Animais , Antígenos Ly/metabolismo , Apoptose , Tetracloreto de Carbono/toxicidade , Microambiente Celular/imunologia , Modelos Animais de Doenças , Células Estreladas do Fígado/patologia , Células Matadoras Naturais/imunologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Yi Chuan ; 37(6): 599-604, 2015 06.
Artigo em Zh | MEDLINE | ID: mdl-26351057

RESUMO

Genetics is one of the most important courses for undergraduate students majoring in life science. In recent years, new knowledge and technologies are continually updated with deeper understanding of life science. However, the teaching model of genetics is still based on theoretical instruction, which makes the abstract principles hard to understand by students and directly affects the teaching effect. Thus, exploring a new teaching model is necessary. We have carried out a new teaching model, literature-based learning, in the course on Microbial Genetics for undergraduate students majoring in biotechnology since 2010. Here we comprehensively analyzed the implementation and application value of this model including pre-course knowledge, how to choose professional literature, how to organize teaching process and the significance of developing this new teaching model for students and teachers. Our literature-based learning model reflects the combination of "cutting-edge" and "classic" and makes book knowledge easy to understand, which improves students' learning effect, stimulates their interests, expands their perspectives and develops their ability. This practice provides novel insight into exploring new teaching model of genetics and cultivating medical talents capable of doing both basic and clinical research in the "precision medicine" era.


Assuntos
Genética/educação , Aprendizagem , Ensino
3.
Front Immunol ; 14: 1193081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680624

RESUMO

Yolk sac-derived microglia and peripheral monocyte-derived macrophages play a key role during Parkinson's disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)-positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J-mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling.


Assuntos
NF-kappa B , Doença de Parkinson , Animais , Camundongos , Microglia , Ativação de Macrófagos , Transdução de Sinais , Dopamina
4.
Cell Rep ; 38(10): 110451, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263597

RESUMO

Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) play critical roles in tumorigenesis. However, the mechanisms underlying MDSC and TAM development and function remain unclear. In this study, we find that myeloid-specific activation of Notch/RBP-J signaling downregulates lactate transporter MCT2 transcription via its downstream molecule Hes1, leading to reduced intracellular lactate levels, blunted granulocytic MDSC (G-MDSC) differentiation, and enhanced TAM maturation. We identify c-Jun as a novel intracellular sensor of lactate in myeloid cells using liquid-chromatography-mass spectrometry (LC-MS) followed by CRISPR-Cas9-mediated gene disruption. Meanwhile, lactate interacts with c-Jun to protect from FBW7 ubiquitin-ligase-mediated degradation. Activation of Notch signaling and blockade of lactate import repress tumor progression by remodeling myeloid development. Consistently, the relationship between the Notch-MCT2/lactate-c-Jun axis in myeloid cells and tumorigenesis is also confirmed in clinical lung cancer biopsies. Taken together, our current study shows that lactate metabolism regulated by activated Notch signaling might participate in MDSC differentiation and TAM maturation.


Assuntos
Células Supressoras Mieloides , Carcinogênese/genética , Humanos , Ácido Láctico , Células Mieloides , Transdução de Sinais , Fatores de Transcrição HES-1
5.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32948650

RESUMO

BACKGROUND: Accumulating evidence has shown that tumor-associated macrophages (TAMs) play a critical role in tumor progression. Targeting TAMs is a potential strategy for tumor immunotherapy. However, the mechanism underlying the TAM phenotype and function needs to be resolved. Our previous studies have demonstrated that miR-125a can reverse the TAM phenotype toward antitumor. Meanwhile, we have found that miR-125a and miR-99b cluster in the first intron of the same host gene, and are transcribed simultaneously in bone marrow-derived macrophages (BMDMs) following LPS+IFNγ stimulation. However, it remains unclear whether miR-99b by itself can exert an antitumor effect by regulating macrophage phenotype. METHODS: miR-99b and/or miR-125a were delivered into TAMs of orthotopic hepatocellular carcinoma (HCC) or subcutaneous Lewis lung cancer (LLC) mice. The effect of treatment was evaluated by live imaging, TUNEL staining and survival tests. The phenotype of the immune cells was determined by qRT-PCR, ELISA, western blot and FACS. The capability of miR-99b-mediated macrophage phagocytosis and antigen presentation was detected by FACS and immunofluorescence staining. The underlying molecular mechanism was examined by qRT-PCR, reporter assay and western blot, and further verified in the tumor model. The expression of miR-99b and its target genes was determined in TAMs sorted from tumor and adjacent tissues in patients with liver cancer. RESULTS: Targeted delivery of miR-99b and/or miR-125a into TAMs significantly impeded the growth of HCC and LLC, especially after miR-99b delivery. More importantly, the delivery of miR-99b re-educated TAM toward antitumor phenotype with enhanced immune surveillance. Further investigation of mechanisms showed that macrophage-specific overexpression of miR-99b promoted M1 while suppressing M2 macrophage polarization by targeting κB-Ras2 and/or mTOR, respectively. miR-99b-overexpressed M1 macrophage was characterized by stronger capability of phagocytosis and antigen presentation. Additionally, delivery of simTOR or siκB-Ras2 into TAMs inhibited miR-99b antagomir-triggered tumor growth. Finally, miR-99b expression was lower in TAMs of patients with liver cancer than that in adjacent tissues, while the expression of κB-Ras2 and mTOR was reversed. CONCLUSIONS: Our results reveal the mechanism of miR-99b-mediated TAM phenotype, indicating that TAM-targeted delivery of miR-99b is a potential strategy for cancer immunotherapy.


Assuntos
Ativação de Macrófagos/fisiologia , MicroRNAs/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Fenótipo , Transfecção
6.
Cancer Res ; 79(16): 4160-4172, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31266773

RESUMO

Tumor-associated macrophages (TAM) play pivotal roles in tumor progression and metastasis, but the contribution and regulation of different macrophage populations remain unclear. Here we show that Notch signaling plays distinct roles in regulating different TAM subsets in hepatocellular carcinoma (HCC). Myeloid-specific NOTCH blockade by conditional disruption of recombination signal binding protein Jκ (RBPj cKO) significantly delayed the growth of subcutaneously inoculated Lewis lung carcinoma (LLC), but accelerated orthotopically inoculated hepatic Hepa1-6 tumors in mice. In contrast to subcutaneous LLC, RBPj cKO significantly increased the number of TAMs in hepatic Hepa1-6 tumors despite impeded differentiation of monocyte-derived TAMs (moTAM). The dominating TAMs in orthotopic HCC manifested properties of Kupffer cells (KC) and hence are tentatively named KC-like TAMs (kclTAM). The increased proliferation of RBPj cKO kclTAMs was maintained even in Ccr2 -/- mice, in which moTAMs were genetically blocked. NOTCH signaling blockade accelerated proliferation of kclTAMs via enhanced ß-catenin-dependent WNT signaling, which also downregulated IL12 and upregulated IL10 expression by kclTAMs likely through c-MYC. In addition, myeloid-specific RBPj cKO facilitated hepatic metastasis of colorectal cancer but suppressed lung metastasis in mice, suggesting that the phenotype of RBPj cKO in promoting tumor growth was liver-specific. In patient-derived HCC biopsies, NOTCH signaling negatively correlated with WNT activation in CD68+ macrophages, which positively correlated with advanced HCC stages. Therefore, NOTCH blockade impedes the differentiation of moTAMs, but upregulates Wnt/ß-catenin signaling to promote the proliferation and protumor cytokine production of kclTAMs, facilitating HCC progression and hepatic metastasis of colorectal cancer. SIGNIFICANCE: These findings highlight the role of NOTCH and WNT signaling in regulating TAMs in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , Macrófagos/patologia , Receptores Notch/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Carcinoma Pulmonar de Lewis/metabolismo , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores Notch/genética
7.
Front Immunol ; 9: 1744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105024

RESUMO

The Notch pathway plays critical roles in the development and functional modulation of myeloid cells. Previous studies have demonstrated that Notch activation promotes M1 polarization and phagocytosis of macrophages; however, the downstream molecular mechanisms mediating Notch signal remain elusive. In an attempt to identify Notch downstream targets in bone marrow-derived macrophages (BMDMs) using mass spectrometry, the signal regulatory protein α (SIRPα) appeared to respond to knockout of recombination signal-binding protein Jk (RBP-J), the critical transcription factor of Notch pathway, in macrophages. In this study, we validated that Notch activation could repress SIRPα expression likely via the Hes family co-repressors. SIRPα promoted macrophage M2 polarization, which was dependent on the interaction with CD47 and mediated by intracellular signaling through SHP-1. We provided evidence that Notch signal regulated macrophage polarization at least partially through SIRPα. Interestingly, Notch signal regulated macrophage phagocytosis of tumor cells through SIRPα but in a SHP-1-independent way. To access the translational value of our findings, we expressed the extracellular domains of the mouse SIRPα (mSIRPαext) to block the interaction between CD47 and SIRPα. We demonstrated that the soluble mSIRPαext polypeptides could promote M1 polarization and increase phagocytosis of tumor cells by macrophages. Taken together, our results provided new insights into the molecular mechanisms of notch-mediated macrophage polarization and further validated SIRPα as a target for tumor therapy through modulating macrophage polarization and phagocytosis.


Assuntos
Regulação da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose , Receptores Imunológicos/genética , Receptores Notch/metabolismo , Animais , Antígeno CD47/metabolismo , Proteínas de Transporte , Linhagem Celular Tumoral , Imunomodulação , Camundongos , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Receptores Imunológicos/metabolismo
8.
Front Immunol ; 8: 1327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085372

RESUMO

The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs). In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF). Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS). Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.

9.
Cancer Res ; 76(6): 1403-15, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26759236

RESUMO

Tumor-associated macrophages (TAM) contribute greatly to hallmarks of cancer. Notch blockade was shown to arrest TAM differentiation, but the precise role and underlying mechanisms require elucidation. In this study, we employed a transgenic mouse model in which the Notch1 intracellular domain (NIC) is activated conditionally to define the effects of active Notch1 signaling in macrophages. NIC overexpression had no effect on TAM differentiation, but it abrogated TAM function, leading to repressed growth of transplanted tumors. Macrophage miRNA profiling identified a novel downstream mediator of Notch signaling, miR-125a, which was upregulated through an RBP-J-binding site at the first intronic enhancer of the host gene Spaca6A. miR-125a functioned downstream of Notch signaling to reciprocally influence polarization of M1 and M2 macrophages by regulating factor inhibiting hypoxia inducible factor-1α and IRF4, respectively. Notably, macrophages transfected with miR-125a mimetics increased phagocytic activity and repressed tumor growth by remodeling the immune microenvironment. We also identified a positive feedback loop for miR-125a expression mediated by RYBP and YY1. Taken together, our results showed that Notch signaling not only supported the differentiation of TAM but also antagonized their protumorigenic function through miR-125a. Targeting this miRNA may reprogram macrophages in the tumor microenvironment and restore their antitumor potential.


Assuntos
Macrófagos/fisiologia , MicroRNAs/genética , Receptor Notch1/genética , Regulação para Cima/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Regulação Neoplásica da Expressão Gênica/genética , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Fator de Transcrição YY1/genética
10.
Gene ; 542(2): 182-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657059

RESUMO

FHL1C is a LIM domain protein that has been implied in transcription regulation through interacting with other proteins, such as RBP-J, the critical transcription factor of the Notch signaling pathway. The LIM domain is a protein-protein interaction interface, suggesting that FHL1C could bind other proteins to enable its functions. In order to explore the interacting proteins with FHL1C, in this study we screened FHL1C-interacting proteins by using immunoprecipitation and mass spectrometric analysis. ZO-1, a member of the Zonula occludens proteins that constitute tight junctions, was sorted out as one candidate by using these techniques. Furthermore, we confirmed the interaction between FHL1C and ZO-1 in cells by using the mammalian two-hybrid assay and the co-immunoprecipitation assay, and verified that ZO-1 could interact with FHL1C through the PDZ domains of ZO-1. Moreover, with immunofluorescence staining, we found that FHL1C could induce ZO-1 translocating into nucleus. With a breast adenocarcinoma cell line MCF7, we showed that the interaction between FHL1C and ZO-1 could contribute to the epithelial-mesenchymal transition (EMT). Taken together, our study might provide new insight into the function of FHL1C on the regulation of EMT in cancer cells.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Domínios PDZ , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteína da Zônula de Oclusão-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA