Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Oncol Res ; 20(8): 369-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924857

RESUMO

Oldhamianoside II is a new triterpenoid saponin that was isolated from the roots of Gypsophila oldhamiana. The present study aims to investigate the potential inhibitory activity of oldhamianoside II on tumor growth using an S180 tumor implantation mouse model. Oldhamianoside II at doses of 5.0 and 10.0 mg/kg was given with intraperitoneal injection for 10 days following subcutaneous inoculation of S180 tumor cells in anterior flank of mice. The tumor growth, the cell apoptosis, the microvessel density (MVD) in S180 tumors, the tumor cell viability, the tubular formation in vitro, and migration of tumor cells were examined. The expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and cyclooxygenase-2 (COX-2) was determined to analyze the associated mechanisms. The results showed that oldhamianoside II potently inhibited tumor cell viability in vitro. In addition, oldhamianoside II delayed tumor growth in anterior flank, induced S180 cell apoptosis, and reduced the MVD. Oldhamianoside II was also demonstrated to decrease the number of tubular structure and vessel formation in HUVEC cultures and chick embryo chorioallantoic membrane (CAM) model, respectively. Further study indicated that oldhamianoside II reduced the expression of VEGF, bFGF, and COX-2 in tumor sections. Moreover, oldhamianoside II inhibited the activity of migration and penetration to Matrigel of SGC7901 tumor cells in scratch wound and transwell chamber. In conclusion, our work defines oldhamianoside II, a new triterpenoid saponin, as a novel compound that can effectively inhibit S180 tumor growth, induce tumor cell apoptosis, prevent tumor angiogenesis, and inhibit cancer cell migration, suggesting that oldhamianoside II is a potential drug candidate for the treatment of cancer and for the prevention of metastasis.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
2.
Biomed Pharmacother ; 118: 109380, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545224

RESUMO

BACKGROUND: Corticosteroid is one of the main treatments for interstitial lung disease (ILD). Cryptogenic-organizing pneumonia (COP) is sensitive to corticosteroid therapy, whereas idiopathic pulmonary fibrosis (IPF) is not. Glucocorticoid receptor-α (GR-α) and histone deacetylase 2 (HDAC2) play critical roles in the sensitivity to corticosteroid therapy; however, it is unclear whether HDAC2 and/or GR-α are expressed in the lung tissues of patients with COP and/or IPF. Possible aberrant expressions of HDAC2 and GR-α in IPF and COP were investigated in the current study. METHODS: Lung tissue samples were obtained from patients with COP (n = 9), IPF (n = 8), pulmonary abscesses (n = 7), or pulmonary inflammatory pseudotumors (n = 6) before corticosteroid treatment, as well as from control subjects (n = 10). The expression of GR-α, HDAC2, PI3K-δ, and NF-κBp65 in the samples was assessed by immunohistochemistry. RESULTS: GR-α expression was the same in lung tissues from COP patients and control subjects, but was significantly lower in lung tissue from IPF. In addition, HDAC2 was significantly higher in lung tissues of COP patients compared to both IPF and control subjects. Furthermore, the transcription factor NF-κBp65 was significantly lower in lung tissues from both COP and control compared to IPF subjects, whereas there was no difference in NF-κBp65 when comparing tissues from COP patients to controls. HDAC2 and GR-α were negatively correlated with NF-κBp65 in COP lung tissue. CONCLUSION: HDAC2 and GR-α expression in lung tissues are potential biomarkers for predicting corticosteroid sensitivity when initially treating COP and IPF, as well as other forms of ILD.


Assuntos
Histona Desacetilase 2/metabolismo , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Receptores de Glucocorticoides/metabolismo , Esteroides/uso terapêutico , Pneumonia em Organização Criptogênica/complicações , Pneumonia em Organização Criptogênica/patologia , Pneumonia em Organização Criptogênica/fisiopatologia , Feminino , Humanos , Pulmão/patologia , Pulmão/fisiopatologia , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA