Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 121944, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067337

RESUMO

The identification of biofilm growth footprints influencing on the biofilm detachment and breakup can advance research into how biofilms form. Thus, a gravity-driven ceramic membrane bioreactor (GDCMBR) was used to investigate the growth, detachment and breakup of biofilm using rainwater pretreated by electrocoagulation under 70-days continuous operation. The in-situ ultrasonic time-domain reflectometry (UTDR) technique was applied to non-invasively determine the biofilm thickness. Initially, the biofilm was slowly thickening, but it would collapse and became thinner after accumulating to a certain level, and then it thickened again in a later period, following a cyclic pattern of 'thickening - collapsing - thickening'. This is because the biofilm growth is related with the accumulation of flocs, however, excessive floc formation results in the biofilm being overweight till reaching the thickness limit and thus collapsing. Subsequently, the biofilm gradually thickens again due to the floc production and continuous deposition. Although the biofilm was dynamically changing, the water quality of treatment of the biofilm always remained stable. Ammonia nitrogen and total phosphorus have been almost completely removed, while CODMn removal efficiency was around 25%. And total bacteria amount in the membrane concentrate was obviously higher than that in the influent with the greater microbial activity, demonstrating the remarkable enrichment effect on bacteria. The understanding of biofilm growth characteristic and footprint identification enables us to develop rational approaches to control biofilm structure for efficient GDCMBR performance and operation lifespan.


Assuntos
Biofilmes , Reatores Biológicos , Cerâmica , Purificação da Água/métodos , Chuva , Membranas Artificiais , Fósforo
2.
J Environ Manage ; 353: 120191, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38325286

RESUMO

The daily discharge of rural sewage in China occupies 30 % of the national wastewater discharge, and developing an energy-efficient, easy to operate, and decentralized rural sewage treatment technology becomes an important task. In this work, a novel rural sewage treatment technology, Electrocoagulation enhanced Gravity-Driven Membrane Bioreactor (EC-GDMBR) was exploited for the rural sewage treatment under long-term operation (160 days). Two EC-GDMBRs with various module structures of ceramic membrane (horizontal module and side module) not only displayed the desirable effluent quality, but also sustained the stable flux (8-13 LMH). The electrocoagulation, electrooxidation, biodegradation, and separation in EC-GDMBRs were able to synergistically remove the particle matter, organic (CODCr effluent <11.6 ± 1.2 mg/L) and nutrients (NH3-N effluent <0.1 mg/L, TN effluent <8.5 mg/L, TP effluent <0.05 mg/L). Besides, the high permeability of ceramic membrane and large porosity of biofilm on its surface improved the sustainability of stable flux during the long-term operation. Moreover, by analyzing bacterial abundance, Extracellular Polymeric Substances, Adenosine Tri-Phosphate and Confocal Laser Scanning Microscopy, a large number of microorganisms grew and accumulated on the carrier, as well as formed the biofilm (23.46-659.9 µm), while Nitrobacteria (1.6-4.1 %) and Nitrate (0.01-0.06 %) exited in the carrier biofilms, promoting the nitrogen removal. Compared with EC-GDMBR with side module of ceramic membrane, EC-GDMBR with horizontal module of ceramic membrane has advantages in flux behavior, organic/nutrient removal, microbial abundance/activity, abundance of nitrogen removal functional bacteria and water permeability of biofilm, because the ceramic membrane of horizontal module can promote the uniform growth of biofilm and improve the uniformity of flow penetration distribution. In general, the findings of this work verify the reliability of EC-GDMBR for the sustainable operation of wastewater treatment and improve its application value of rural sewage treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Reprodutibilidade dos Testes , Membranas Artificiais , Reatores Biológicos , Nitrogênio/metabolismo , Bactérias/metabolismo
3.
Phys Rev E ; 109(4-2): 045210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755935

RESUMO

For low-density plasmas, the ionization balance can be properly described by the normal Saha equation in the chemical picture. For dense plasmas, however, nonideal effects due to the interactions between the electrons and ions and among the electrons themselves affect the ionization potential depression and the ionization balance. With the increasing of plasma density, the pressure ionization starts to play a more obvious role and competes with the thermal ionization. Based on a local-density temperature-dependent ion-sphere model, we develop a unified and self-consistent theoretical formalism to simultaneously investigate the ionization potential depression, the ionization balance, and the charge states distributions of the dense plasmas. In this work, we choose Al and Au plasmas as examples as Al is a prototype light element and Au is an important heavy element in many research fields such as in the inertial confinement fusion. The nonideal effect of the free electrons in the plasmas is considered by the single-electron effective potential contributed by both the bound electrons of different charge states and the free electrons in the plasmas. For the Al plasmas, we can reconcile the results of two experiments on measuring the ionization potential depression, in which one experiment can be better explained by the Stewart-Pyatt model while the other fits better with the Ecker-Kröll model. For dense Au plasmas, the results show that the double peak structure of the charge state distribution appears to be a common phenomenon. In particular, the calculated ionization balance shows that the two- and three-peak structures can appear simultaneously for denser Au plasmas above ∼30g/cm^{3}.

4.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
5.
Environ Sci Pollut Res Int ; 31(25): 37376-37386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771537

RESUMO

Sediment re-suspension plays a crucial role in releasing endogenous nitrogen and greenhouse gases in shallow urban waters. However, the impacts of repeated re-suspension and photo-induced processes on migration and transformation from endogenous nitrogen, as well as the emission of greenhouse gases, remain unclear. This study simulated three conditions: re-suspension (Rs), re-suspension combined with ultravioletirradiation (Rs + UV), and ultraviolet irradiation (UV). The findings revealed that both repeated sediment re-suspension and exposure to UV light altered the characteristics of surface sediments. Decrease of convertible nitrogen in sediments, leading to the release of ion-exchangeable nitrogen (IEF-N) into NH4+-N and NO3--N, influenced greenhouse gas production differently under various conditions. The study observed the highest concentration of dissolved N2O in under UV irradiation, positively correlated with NO2--N and NO3--N. Re-suspension increased the turbidity of the overlying water and accelerated nitrification, resulting in the highest NO3--N concentration and the lowest dissolved N2O concentration. Additionally, in the Rs + UV dissolved N2O maintained the higher concentrations than in Rs, with greatest amount of N conversion in surface sediments, and a 59.45% reduction in IEF-N. The production of N2O during re-suspension was mainly positively correlated with NH4+-N in the overlying water. Therefore, this study suggest that repeated re-suspension and light exposure significantly influence nitrogen migration and transformation processes in sediment, providing a theoretical explanation for the eutrophication of water and greenhouse gas emissions.


Assuntos
Nitrogênio , Nitrogênio/análise , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA