Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 96(12): 4909-4917, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489746

RESUMO

Due to the ideal optical manipulation ability, the metasurface has broad prospects in the development of novel optical research. In particular, an active metasurface can control optical response through external stimulus, which has attracted great research interest. However, achieving effective modulation of the optical response is a significant challenge. In this work, we have developed a novel electrochemiluminescence (ECL) signal modulation strategy by an active magnetoplasmonic metasurface under an external magnetic field. The magnetoplasmonic metasurface was assembled based on yolk-shell Fe3O4@Au nanoparticles (Fe3O4@Au YS-NPs). On the one hand, the yolk-shell structure of Fe3O4@Au YS-NPs possessed the surface plasmon coupling effect and cavity-based Purcell effect, which provided high-intensity electromagnetic hot spots in the magnetoplasmonic metasurface. On the other hand, due to the strong magnetic response of the Fe3O4 core, the local magnetic field was induced by the external magnetic field, which further generated Lorentz force acting on the free electrons of Au nanoshells with strong optical anisotropy. The plasmon frequency of the metasurface can be effectively modulated by the Lorentz force effect. As a result, the ECL signal of nitrogen dots (N dots) was dynamically modulated and significantly enhanced at a specific polarization angle by the magnetoplasmonic metasurface under the variable external magnetic field. Based on the luminescence modulation ability and structure feature, the magnetoplasmonic metasurface was further established successfully as a sensing interface for gastric cancer (GC) extracellular vesicle (EV) detection. This study illustrated that the electromagnetic response of the active metasurface can effectively improve the optical modulation ability and luminescence sensing performance.

2.
Small ; : e2405700, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165189

RESUMO

The development of self-healing materials provides a new opportunity and challenge for advancing triboelectric nanogenerators (TENGs). However, the low strength and low toughness of self-healing triboelectric materials often result in the deformation or breakage of TENG under high mechanical loads, thereby limiting their potential applications. Herein, a new strategy for fabricating self-healing triboelectric materials is reported, which introduces cross-linking networks with hydrogen bonds and metal coordination bonds. The desired high performance can be achieved by simply adjusting the molar ratio of the metal to the ligand. When the molar ratio is 1:2, the tensile strength, toughness, and elongation at break of the material reached 13.7 MPa, 76.9 MJ m-3, and 1321%, respectively. Furthermore, its self-healing efficiency can reach 74% at 70 °C in 6 h. Working in contact-separation mode, the electrical output can reach 164 V, 18.2 µA, 57.5 nC, with a maximum power density of 2.54 W m-2. Notably, even if it is sheared, the electrical output performances of TENG can be completely recovered to the original state. In addition, the developed TENG exhibits excellent output stability over 10 000 contact separation cycles. This study presents a promising approach for the development of stretchable smart generators.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38884920

RESUMO

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

4.
Biosens Bioelectron ; 249: 116008, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245932

RESUMO

Metal-organic frameworks (MOFs) porous material have obtained more and more attention during the past decade. Among various MOFs materials, luminescent MOFs with specific chemical characteristics and excellent optical properties have been regarded as promising candidates in the research of cancer biomarkers detection and bioimaging. Therefore, the latest advances and the principal biosensing and imaging strategies based on the luminescent MOFs were discussed in this review. The effective synthesis methods of luminescent MOFs were emphasized firstly. Subsequently, the luminescent principle of MOFs has been summarized. Furthermore, the luminescent MOF-based sensing mechanisms have been highlighted to provide insights into the design of biosensors. The designability of LMOFs was suitable for different needs of biorecognition, detection, and imaging. Typical examples of luminescent MOF in the various cancer biomarkers detection and bioimaging were emphatically introduced. Finally, the future outlooks and challenges of luminescent MOF-based biosensing systems were proposed for clinical cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Biomarcadores Tumorais , Luminescência , Porosidade
5.
Polymers (Basel) ; 16(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256984

RESUMO

Warp sizing is a key process in textile production. However, before the yarn/fabric finishing, such as dyeing, the paste adhering to the warp must be eliminated to ensure optimal dyeing properties and the flexibility of the fabric. Therefore, the sizing will often consume a lot of energy and produce a lot of industrial wastewater, which will cause serious harm to the environment. In this study, we have developed an energy saving and environmentally friendly starch-based slurry by modifying natural starch with acrylamide. The paste has excellent viscosity stability and fiber adhesion, and exhibits excellent performance during warp sizing. In addition, the slurry has good water solubility at 60-70 °C, so it is easy to desize at low temperatures. Because of this, the sizing of the warp can be deslimed directly from the yarn during subsequent washing processes. This work can not only reduce some costs for the textile industry, but also achieve the purpose of energy conservation and emission reduction.

6.
Talanta ; 277: 126343, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823325

RESUMO

The van der Waals heterojunction is able to combine the advantages of different materials and has potential to be used in biosensing researches. In this study, we developed a novel van der Waals heterojunction by combining MXene and MoS2 nanosheets for the electrochemiluminescence (ECL) sensing applications. This van der Waals heterojunction material not only possessed the superior conductivity of MXene, but also regulated the electron transport. Additionally, the incorporation of MoS2 nanosheets into the MXene interlayers significantly enhances the material stability. Meanwhile, nitrogen-rich quantum dots (N dots) were synthesized as ECL tags with an impressive nitrogen content of up to 75 %. By integrating the ECL response of N dots within the van der Waals heterojunction, we established a highly efficient sensing system for miRNA-373, which overexpressed in triple negative breast cancer tissues. The van der Waals heterojunction-based biosensor can enhance the ECL signal of N dots effectively to detect miRNA-373 from 1 fM to 1 µM. Consequently, the developed sensing system holds promise for the early detection of metastasis of the triple-negative breast cancer, paving the way for the effective clinical interventions.


Assuntos
Técnicas Biossensoriais , Dissulfetos , Técnicas Eletroquímicas , Medições Luminescentes , Molibdênio , Neoplasias de Mama Triplo Negativas , Molibdênio/química , Dissulfetos/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , MicroRNAs/análise , Pontos Quânticos/química , Nanoestruturas/química
7.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
8.
Anal Chim Acta ; 1314: 342792, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876514

RESUMO

Thyroid cancer is the most prevalent endocrine malignancy. The development of sensitive and reliable methods to detect the thyroid cancer is the currently urgent requirement. Herein, we developed an electrochemiluminescence (ECL) biosensor based on MBene derivative quantum dots (MoB QDs) and Ag NP-on-mirror (NPoM) nanocavity structure. On the one hand, MBene QDs as a novel luminescent material in the ECL process was reported for the first time, which can react with H2O2 as co-reactant. On the other hand, the NPoM nanostructure was successfully constructed with the Ag mirror and Ag NPs to provide highly localized hot spots. The NPoM structure had high degree of light field confinement and electromagnetic field enhancement, which can amplify the ECL signal as the signal modulator. Therefore, the synergistic effect of the nanocavity and localized surface plasmon resonance (LSPR) mode in the NPoM facilitated the enhancement of the ECL signal of MoB QDs over 21.7 times. Subsequently, the proposed ECL biosensing system was employed to analyze the expression level of miRNA-222-3p in the thyroid cancer exosome. The results indicated the relative association between miRNA-222-3p and BRAFV600E mutation. The MoB QDs/NPoM biosensor displayed the ideal potential in assessing thyroid cancer progression for advancing clinical diagnosis applications.


Assuntos
Exossomos , MicroRNAs , Pontos Quânticos , Neoplasias da Glândula Tireoide , MicroRNAs/análise , Pontos Quânticos/química , Humanos , Exossomos/química , Neoplasias da Glândula Tireoide/diagnóstico , Medições Luminescentes , Técnicas Eletroquímicas , Técnicas Biossensoriais , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção
9.
Biosens Bioelectron ; 264: 116639, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121617

RESUMO

Tumor-derived extracellular vesicles detection has emerged as an important clinical liquid biopsy approach for cancer diagnosis. In this work, we developed a novel hybrid plasmonic nanocavity consisting of hexagonal Au nanoplates nanoarray, SnS2/Au nanosheet layer and biomimetic lipid bilayer. Firstly, the hybrid plasmonic nanocavity combined the optical confinement for the ECL regulation and the biological recognition for the detection of extracellular vesicles. Secondly, MXene-derived Ti2N QDs have been prepared as ECL nanoprobe to label extracellular vesicles. Moreover, biomimetic lipid bilayer with specific aptamer was used to identify extracellular vesicles and integrate Ti2N QDs into the nanocavity with membrane fusion strategy. Due to the significant electromagnetic field enhancement at the cavity region, the hybrid plasmonic nanocavity provided strong field confinement to concentrate and redistribute the ECL emission of QDs with a 9.3-fold enhancement. The hybrid plasmonic nanocavity-based ECL sensing system improved the spatial controllability of EVs analysis and the accurate resolution of specific protein. It achieved the sensitive detection of extracellular vesicles in ascites and successfully distinguished the peritoneal metastasis of gastric cancer.

10.
Talanta ; 279: 126627, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39079436

RESUMO

MiRNA-214 can regulate the expression of their downstream target genes after post-transcriptional and are involved in the biological processes of triple negative breast cancer (TNBC). In this work, the small-sized luminescent Nb2C nanosheet-based whispering gallery mode-enhanced electrochemiluminescence (ECL) strategy was successfully constructed to detect miRNA-214 in TNBC. Firstly, we have synthesized small-sized luminescent Nb2C nanosheets from Nb2AlC MXene. The Nb2C nanosheets not only exhibited more stable chemical properties and reduced the defects of the large sheet structures, but also possessed the quantum confinement effect with the discrete energy level. As a result, the prepared small-sized Nb2C nanosheets had unique luminescent and electrochemical properties. Furthermore, in order to improve the ECL performance of Nb2C nanosheets, SiO2 microspheres were self-assembled on the electrode surface by gas-liquid interface method to form whispering gallery mode structure. Because the light was continuously reflected at the interface of the microcavity in the whispering gallery mode, the ECL signal of Nb2C luminescent nanosheets was amplified largely. Finally, the whispering gallery mode-based ECL sensing platform was established. The results showed that the biosensor had a good linear correlation between the ECL intensity and the logarithm of concentration of miRNA-214 in the range of 10 fM to 100 nM with a limit of detection of 2.5 fM. The actual detection of miRNA-214 content in clinical TNBC tissue samples was realized successfully.

11.
Adv Mater ; 36(27): e2401236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599344

RESUMO

Common polymeric conductive electrodes, such as polyethylene terephthalate (PET) coated with indium tin oxide, face a major challenge due to their low processing-temperature limits, attributed to PET's low glass transition temperature (Tg) of (70-80 °C). This limitation significantly narrows the scope of material selection, limits the processing techniques applicable to the low Tg, and hinders the ripened technology transfer from glass substrates to them. Addressing the temperature constraints of the flexible substrates is impactful yet underexplored, with broader implications for fields beyond photovoltaics. Here, a new thermal radiation annealing methodology is introduced to address this issue. By applying the above Tg radiation annealing in conjunction with thermoelectric cooling, highly ordered molecular packing on PET substrates is successfully created, which is exclusively unachievable due to PET's low thermal tolerance. As a result, in the context of perovskite solar cells, this approach enables the circumvention of high-temperature annealing limitations of PET substrates, leading to a remarkable flexible device efficiency of 22.61% and a record fill factor of 83.42%. This approach proves especially advantageous for advancing the field of flexible optoelectronic devices.

12.
Int J Biol Macromol ; 274(Pt 2): 133550, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030156

RESUMO

The escalating global population has led to a surge in waste textiles, posing a significant challenge in landfill management worldwide. In this work, ionic liquid 1-butyl-3-methylimidazole acetate ([Bmim]OAc) and DMF (N, n-dimethylformamide) were used as solvents to dissolve waste denim fabric, then vanadium dioxide (VO2) nanoparticles were introduced into the spinning solution, and cellulose fibers were regenerated by dry-wet spinning process, to promote the recycling of waste cotton fabric. Finally, regenerated cellulose fibers with high added value were prepared by dry-wet spinning. Through this innovative strategy, on the one hand, because VO2 can form a large number of hydrogen bonds between the regenerated cellulose molecules, and realize the cross-networking structure of the molecular chains inside the fiber, the mechanical properties of the regenerated cellulose fibers are enhanced. On the other hand, due to the thermal phase transformation characteristics of VO2, it also endows the regenerated cellulose fiber unique intelligent temperature control function. Compared with the pristine regenerated fiber, the tensile stress of the regenerated fiber after adding VO2 nanoparticles (F-VO2) increased by 25.6 %, reaching 158.68 MPa. In addition, the F-VO2 fibric provides excellent intelligent temperature control, reducing temperatures by up to 6.7 °C.


Assuntos
Celulose , Temperatura , Celulose/química , Resistência à Tração , Fenômenos Mecânicos , Nanopartículas/química
13.
Nat Commun ; 15(1): 670, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253630

RESUMO

The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.

14.
Int J Biol Macromol ; 270(Pt 2): 132462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772470

RESUMO

Rapid development of society and the improvement of people's living standards have stimulated people's keen interest in fashion clothing. This trend has led to the acceleration of new product innovation and the shortening of the lifespan for cotton fabrics, which has resulting in the accumulation of waste cotton textiles. Although cotton fibers can be degraded naturally, direct disposal not only causes a serious resource waste, but also brings serious environmental problems. Hence, it is significant to explore a cleaner and greener waste textile treatment method in the context of green and sustainable development. To realize the high-value utilization of cellulose II aerogel derived from waste cotton products, great efforts have been made and considerable progress has been achieved in the past few decades. However, few reviews systematically summarize the research progress and future challenges of preparing high-value-added regenerated cellulose aerogels via dissolving cotton and other cellulose wastes. Therefore, this article reviews the regenerated cellulose aerogels obtained through solvent methods, summarizes their structure, preparation strategies and application, aimed to promote the development of the waste textile industry and contributed to the realization of carbon neutrality.


Assuntos
Celulose , Fibra de Algodão , Géis , Têxteis , Celulose/química , Fibra de Algodão/análise , Géis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA