Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
2.
Biol Reprod ; 102(4): 943-949, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31803924

RESUMO

Endometriosis is a common estrogen-dependent inflammatory disease characterized by the presence of endometrial-like tissue outside the uterine cavity, which causes infertility and pelvic pain. Polymorphisms in MALAT1 have been demonstrated to play crucial roles in many diseases. However, the roles of MALAT1 polymorphisms in the etiology of endometriosis have not been well documented. We genotyped three MALAT1 polymorphisms in 555 endometriosis patients and 535 female control participants using quantitative polymerase chain reaction with TaqMan probes. To estimate the associations between MALAT1 polymorphisms and endometriosis risk, an unconditional logistic regression model was conducted to calculate an odds ratio (OR) and the 95% confidence interval (CI), adjusting for age, abortion history, number of deliveries, Body Mass Index (BMI), and The International Federation of Gynecology and Obstetrics (FIGO) stage. We found that the MALAT1 rs591291 C > T polymorphism significantly enhanced endometriosis risk (heterogeneous: adjusted OR = 1.36, 95% CI = 1.00-1.85, P = 0.050; homogenous: adjusted OR = 1.55, 95% CI = 1.03-2.33, P = 0.037; dominant: adjusted OR = 1.41, 95% CI = 1.05-1.88, P = 0.021). In stratification analyses, these associations were more predominant in the patients younger than 35 years old, with a relatively high number of deliveries and with a BMI between 25 and 29.9. Compared with wild-type CCG haplotype carriers, individuals with TCC haplotypes had a higher risk of developing endometriosis. The MALAT1 rs591291 C > T polymorphism was associated with a significant increase in endometriosis risk.


Assuntos
Endometriose/genética , RNA Longo não Codificante/genética , Adulto , Alelos , Estudos de Casos e Controles , China , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
3.
J Clin Lab Anal ; 34(4): e23146, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31880028

RESUMO

BACKGROUND: Endometrial cancer is the most common gynecologic malignancy worldwide. Polymorphisms in MALAT1 have been demonstrated to play critical roles in cancer. However, the roles of MALAT1 polymorphisms in the etiology of endometrial cancer have not been well documented. METHODS: We genotyped three MALAT1 polymorphisms in 249 endometrial cancer cases and 446 cancer-free female controls using quantitative polymerase chain reaction with TaqMan probes. To estimate the association between MALAT1 polymorphisms (rs591291 C>T, rs664589 C>G, and rs4102217 G>C) and the risk of endometrial cancer, an unconditional logistic regression model was conducted to calculate the odds ratio (OR) and the 95% confidence interval (CI), adjusting for surgery history, menopause, number of deliveries, BMI, and FIGO stage. RESULTS: We found that the MALAT1 rs664589 C>G polymorphism was significantly associated with endometrial cancer risk (heterogeneous: adjusted OR = 0.57, 95% CI = 0.34-0.93, P = .026; homogenous: adjusted OR = 3.74, 95% CI = 1.12-12.45, P = .032; and recessive: adjusted OR = 4.06, 95% CI = 1.22-13.48, P = .022). Stratified analysis further demonstrated that the MALAT1 rs664589 C>G polymorphism significantly increased the risk of endometrial cancer susceptibility in patients with no history of surgery, more deliveries, BMI between 25 and 29.9, and FIGO stages II-III. Compared with the wild-type GCG haplotype carriers, individuals with CGG haplotypes had a higher risk of developing endometrial cancer. CONCLUSION: The MALAT1 rs664589 C>G polymorphism was associated with a significant increase in endometrial cancer risk.


Assuntos
Povo Asiático/genética , Neoplasias do Endométrio/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Haplótipos/genética , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Fatores de Risco
5.
Cell Death Dis ; 14(10): 668, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816731

RESUMO

Endometriosis is a gynecological inflammatory disease that is linked with immune cells, specifically macrophages. IL-33 secreted from macrophages is known to accelerate the progression of endometriosis. The periodic and repeated bleeding that occurs in women with endometriosis leads to excess iron in the microenvironment that is conducive to ferroptosis, a process related to intracellular ROS production, lipid peroxidation and mitochondrial damage. It is suggested that eESCs may specifically be able to inhibit ferroptosis. However, it is currently unclear whether IL-33 directly regulates ferroptosis to influence the disease course in endometriosis. In this study, eESCs co-cultured with macrophages or stimulated with IL-33/ST2 were observed to have increased cell viability and migration. Additionally, IL-33/ST2 decreased intracellular iron levels and lipid peroxidation in eESCs exposed to erastin treatment. Furthermore, IL-33/ST2 treatment resulted in a notable upregulation in SLC7A11 expression in eESCs due to the downregulation of negative transcription factor ATF3, thereby suppressing ferroptosis. The P38/JNK pathway activated by IL-33/ST2 was also found to inhibit the transcription factor ATF3. Therefore, we concluded that IL-33/ST2 inhibits the ATF3-mediated reduction in SLC7A11 transcript levels via the P38/JNK pathway. The findings reveal that macrophage-derived IL-33 upregulates SLC7A11 in eESCs through the p38/JNK/ATF3 pathway, ultimately resulting in protection against ferroptosis in eESCs. Moreover, we conducted an experiment using endometriosis model mice that showed that a combination of IL-33-Ab and erastin treatment alleviated the disease, showing the promise of combining immunotherapy and ferroptosis therapy.


Assuntos
Endometriose , Ferroptose , Animais , Feminino , Humanos , Camundongos , Fator 3 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos/genética , Endometriose/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/genética , Ferro , Fatores de Transcrição
6.
Cell Death Discov ; 8(1): 190, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35399101

RESUMO

Endometriosis is a chronic disorder characterized by the implantation of endometrial glands and stroma outside the uterus. However, the pathogenesis of endometriosis is still unclear. To date, there is no fully effective treatment without trauma because of various side effects. Recent data suggest that ferroptosis is a novel recognized form of nonapoptosis-regulated cell death characterized by iron-dependent and lethal lipid peroxidation accumulation, showing great promise in the treatment of many diseases. In the present study, we verified that erastin induced ferroptosis in ectopic endometrial stromal cells (EESCs). Furthermore, we found that the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was decreased during erastin-induced ferroptosis. Knockdown of MALAT1 significantly aggravated the inhibition of cell viability and increased intracellular iron, Liperfluo, and MDA levels in EESCs upon erastin treatment. Mechanistically, we demonstrated that MALAT1 served as a competing endogenous RNA of miR-145-5p to regulate the expression of MUC1, a suppressor of ferroptosis. MALAT1 knockdown-mediated ferroptotic cell death and MUC1 downregulation could be abrogated by inhibition of miR-145-5p. In addition, miR-145-5p inhibition-mediated ferroptotic cell death could be abolished by MUC1 knockdown. Furthermore, erastin-induced ferroptosis shrunk endometriotic lesions via the MALAT1/miR-145-5p/MUC1 axis in vivo. Taken together, our data indicate that knockdown of MALAT1 facilitates ferroptosis upon erastin treatment via miR-145-5p/MUC1 signaling. The synergistic effect of MALAT1 knockdown and erastin induction in ferroptosis may be a new therapeutic strategy for endometriosis.

7.
Cell Signal ; 98: 110406, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839979

RESUMO

N6-methyladenosine (m6A), the most abundant internal modification on mRNAs in eukaryotes, plays a role in endometriosis (EMs). However, the underlying mechanism remains largely unclear. Here, we found that FTO is downregulated in EMs; and plays an important role in regulating glycolysis, proliferation, and metastasis of ectopic endometriotic stromal cells (EESCs) by targeting ATG5. We demonstrated that FTO promotes ATG5 expression in a m6A-dependent manner, and further studies revealed that PKM2 is a target of ATG5. Upon FTO overexpression, increased ATG5 protein expression at low m6A levels inhibited the expression of PKM2, thereby reducing the glycolysis level of EESCs. In addition, we demonstrated through in vitro functional experiments that FTO regulates glycolysis, proliferation, and metastasis of EESCs through the ATG5/PKM2 axis. In conclusion, these findings reveal the functional importance of the m6A methylation mechanism of FTO in regulating the development of EMs, which expands our understanding of this interaction, which is crucial for the development of therapeutic strategies for EMs.


Assuntos
Endometriose , Neoplasias , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proteína 5 Relacionada à Autofagia/genética , Feminino , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Stem Cell Res Ther ; 13(1): 294, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841069

RESUMO

BACKGROUND: Endometriosis (EMs) is a common benign gynecological disease that affects approximately 10% of females of reproductive age. Endometriosis ectopic lesions could recruit macrophages, which in turn facilitates endometriosis progression. Several studies have indicated that CCL20 derived from macrophages activates the expression of CCR6 in several cells and induces cell proliferation and migration. However, the function of the CCL20/CCR6 axis in the interactions between macrophages and endometriotic stromal cells (ESCs) in EMs has yet to be elucidated. METHODS: Ectopic and normal endometrial tissues were collected from 35 ovarian endometriosis patients and 21 control participants for immunohistochemical staining. It was confirmed that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture by ELISA, qRT-PCR and western blot analysis. CCK8 and Edu assays were used to detect cell proliferation, and wound healing and Transwell assay were used to detect cell migration. Autophagic flux was detected by measuring the protein expression levels of LC3 and P62by western blot and analyzing the red/yellow puncta after ESCs were transfected with mRFP-GFP-LC3 double fluorescence adenovirus (Ad-LC3). Lysosomal function was tested by quantifying the fluorescent intensities of Lyso-tracker and Gal3 and activity of acid phosphatase. In addition, co-IP experiments verified the binding relationship between CCR6 and TFEB. Finally, the suppressive effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. RESULTS: We demonstrated that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture, which further induced the proliferation and migration of ESCs. We observed that the CCL20/CCR6 axis impaired lysosomal function and then blocked the autolysosome degradation process of autophagic flux in ESCs. The combination of CCR6 and TFEB to inhibit TFEB nuclear translocation mediates the role of the CCL20/CCR6 axis in the above process. We also found that co-culture with ESCs upregulated the production and secretion of CCL20 by macrophages. The suppression effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. CONCLUSIONS: Our data indicate that macrophages block TFEB-mediated autolysosome degradation process of autophagic flux in ESCs via the CCL20/CCR6 axis, thereby promoting ESC proliferation and migration.


Assuntos
Quimiocina CCL20 , Endometriose , Receptores CCR6 , Animais , Proliferação de Células , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Endometriose/genética , Endometriose/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Camundongos , Receptores CCR6/genética , Receptores CCR6/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
9.
Ann Palliat Med ; 10(11): 11348-11361, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34872261

RESUMO

BACKGROUND: Endometriosis (EMs) is a benign, but potential metastatic, gynecological disease. Our current study aims to examine whether all-trans retinoic acid (ATRA) inhibits the epithelial-to-mesenchymal transition (EMT) of endometriotic stromal stem cells, as well as to explore the mechanisms involved, especially the role of IL-6 played in. METHODS: Cell clonogenic capacity was examined by the low-density clonogenicity assay. Cell differentiation capacity was assessed by in vitro differentiation. The level of IL-6 was measured by the ELISA assay. Migration and invasion abilities were measured using the transwell assay. Western blot and RT-qPCR were performed to detect EMT-related genes and proteins. RESULTS: Large endometriotic stromal colony forming units (CFUs) could be regarded as the enrichment sets of endometriotic stromal stem cells. They maintained a higher potential for self-renewal, proliferation, invasion, and EMT, along with up-regulated IL-6. After ATRA treatment, the expression of IL-6 was significantly reduced, accompanied by a decrease in the migration, invasion, and EMT of large endometriotic stromal CFUs. In addition, the inhibition of ATRA was mediated by IL-6. CONCLUSIONS: Our study showed that one of the therapeutic effects of ATRA on EMs through its modulation in EMT of large endometriotic stromal CFUs. ATRA may be a promising therapeutic strategy aimed at IL-6 for the stem-cell treatment of EMs.


Assuntos
Endometriose , Regulação para Baixo , Endometriose/tratamento farmacológico , Transição Epitelial-Mesenquimal , Feminino , Humanos , Interleucina-6/genética , Tretinoína/farmacologia
10.
J Cancer ; 12(1): 264-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391423

RESUMO

Base excision repair (BER) acts upon the most important mechanism of the DNA repair system, protecting DNA stability and integrity from the mutagenic and cytotoxic effects. Multiple researches have indicated that single-nucleotide polymorphisms (SNPs) in the BER-related gene may be associated with the susceptibility of ovarian cancer. However, the results are controversial. In this two-center case-control study, 19 potentially functional SNPs in six BER-related genes (hOGG1, APE1, PARP1, FEN1, LIG3 and XRCC1) was genotyped in 196 ovarian cancer cases and 272 cancer-free controls. And, their associations with ovarian cancer risk were assessed by unconditional logistic regression analyses. We found that PARP1 rs8679 and hOGG1 rs293795 polymorphisms were associated with a decreased risk of ovarian cancer under dominant model (adjusted OR=0.39, 95% CI=0.17-0.90, P=0.026; and adjusted OR=0.36, 95% CI=0.13-0.99, P=0.049, respectively). Stratification analysis demonstrated that this association was more pronounced in the subgroups of lower BMI and patients with early menarche and serous carcinoma. Moreover, LIG3 rs4796030 AA/AC variant genotypes performed an increased risk of ovarian cancer under recessive model (adjusted OR=1.54, 95% CI=1.01-2.35, P=0.046), especially in the subgroups of higher BMI, early clinic stage and the carcinoma at the left. These results suggested that PARP1, hOGG1 and LIG3 polymorphisms might impact on the risk of ovarian cancer. However, more researches with larger and different ethnic populations are warranted to support our findings.

11.
Biosci Rep ; 38(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29669843

RESUMO

Nucleotide excision repair (NER), the core mechanism of DNA repair pathway, was commonly used to maintain genomic stability and prevent tumorigenesis. Previous investigations have demonstrated that single nucleotide polymorphisms (SNPs) of NER pathway genes were associated with various types of cancer. However, there was no research elucidating the genetic association of entire NER pathway with ovarian cancer susceptibility. Therefore, we conducted genotyping for 17 SNPs of six NER core genes (XPA, XPC, XPG, ERCC1, ERCC2, and ERCC4) in 89 ovarian cancer cases and 356 cancer-free controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to describe the strength of association. The result showed that both ERCC1 rs11615 and XPC rs2228000 were significantly associated with reduced risk of ovarian cancer under dominant genetic model (adjusted OR = 0.35, 95% CI = 0.20-0.61, P=0.0002 and adjusted OR = 0.49, 95% CI = 0.30-0.81, P=0.005 respectively). In addition, XPC rs2228001 and ERCC2 rs238406 had statistically significant association with the increased risk of ovarian cancer under dominant genetic model (adjusted OR = 1.72, 95% CI = 1.02-2.92, P=0.043 and adjusted OR = 2.07, 95% CI = 1.07-4.01, P=0.032 respectively). ERCC1 rs3212986 were related with the increased risk of ovarian cancer under recessive model (adjusted OR = 2.40, 95% CI = 1.30-4.44, P=0.005). In conclusion, our results indicated that ERCC1, XPC and ERCC2 might influence ovarian cancer susceptibility. Further research with large sample size is warranted to validate the reliability and accuracy of our results.


Assuntos
Biomarcadores Tumorais/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Adulto , Alelos , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Modelos Genéticos , Razão de Chances , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transdução de Sinais , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
12.
Stem Cell Res Ther ; 8(1): 251, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116025

RESUMO

BACKGROUND: Endometriosis is a common, benign, and estrogen-dependent disease characterized by pelvic pain and infertility. To date, the pathogenesis of endometriosis remains unclear. Recent studies have demonstrated that noncoding RNAs, including microRNAs and long noncoding RNAs, play important roles in the development of endometriosis. METHODS: Expression profiling of miRNAs in endometrial tissue was characterized using microarrays. The most differentially expressed miRNAs were confirmed using quantitative reverse transcriptase-polymerase chain reaction analysis in additional ectopic endometrial (n = 27) and normal endometrial (n = 12) tissues. For in-vitro functional studies, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and dual-luciferase reporter assay were used to measure the proliferation, migration, and luciferase activity of miR-200c and the predicted targets of miR-200c in primary endometrial stromal cells (HESCs) derived from human endometrial biopsies, respectively. For in-vivo therapeutic interventions, polymeric nanoparticles of polyethylenimine-polyethylene glycol-arginine-glycine-aspartic acid were used for delivery of miR-200c mimic and inhibitor to determine the therapeutic effect of miR-200c in a rat model of endometriosis. RESULTS: Exogenous overexpression of miR-200c inhibited the proliferation and migration of HESCs, which were mainly regulated by metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). In contrast, inhibition of miR-200c promoted the proliferation and migration of HESCs, while the simultaneous silencing of MALAT1 expression exerted the opposite effects. We demonstrated that expression of MALAT1 in ectopic endometrial specimens was negatively correlated with that of miR-200c and that MALAT1 knockdown increased the level of miR-200c in HESCs. Moreover, the transfection of endometrial stromal cells with the miR-200c mimic or MALAT1 siRNAs decreased the protein levels of mesenchymal markers ZEB1, ZEB2, and N-cadherin and increased the protein levels of the epithelial marker E-cadherin. Furthermore, using a rat endometriosis model, we showed that local delivery of the miR-200c mimic significantly inhibited the growth of ectopic endometriotic lesions. CONCLUSIONS: The MALAT1/miR-200c sponge may be a potential therapeutic target for endometriosis.


Assuntos
Endometriose/genética , Endometriose/metabolismo , MicroRNAs/metabolismo , Nanopartículas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Transfecção
13.
Oncotarget ; 8(68): 112761-112769, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348863

RESUMO

The TP53 gene product is an important regulator of cell growth and a tumor suppressor. The association between TP53 Arg72Pro polymorphism and ovarian cancer risk has been widely investigated, but the results are contradictory. We therefore searched the PubMed, EMBASE and Chinese Biomedical databases for studies on the relation between TP53 Arg72Pro polymorphism and ovarian cancer risk. Our final meta-analysis included 24 published studies with 3271 cases and 6842 controls. Pooled results indicated that there was no significant association between TP53 Arg72Pro polymorphism and ovarian cancer risk [Pro/Pro vs. Arg/Arg: odds ratio (OR) =1.04, 95% confidence interval (CI) = 0.81-1.34; Arg/Pro vs. Arg/Arg: OR = 1.14, 95% CI = 0.96-1.36; recessive: OR = 1.05, 95% CI = 0.90-1.22; dominant: OR = 1.12, 95% CI = 0.94-1.33; and Pro vs. Arg: OR = 1.06, 95% CI=0.93-1.20]. Likewise, stratified analyses failed to reveal a genetic association. Despite some limitations, the present meta-analysis provides statistical evidence indicating a lack of association between TP53 Arg72Pro polymorphism and ovarian cancer risk.

14.
Oncotarget ; 7(44): 71718-71726, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27687591

RESUMO

Mouse double minute 4 (MDM4) is a p53-interacting oncoprotein that plays an important role in the p53 tumor suppressor pathway. The common rs4245739 A > C polymorphism creates a miR-191 binding site in the MDM4 gene transcript. Numerous studies have investigated the association between this MDM4 polymorphism and cancer risk, but have failed to reach a definitive conclusion. To address this issue, we conducted a meta-analysis by selecting eligible studies from MEDLINE, EMBASE, and Chinese Biomedical databases. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. We also performed genotype-based mRNA expression analysis using data from 270 individuals retrieved from public datasets. A total of 15 studies with 19796 cases and 49681 controls were included in the final meta-analysis. The pooled results revealed that the MDM4 rs4245739C allele is associated with a decreased cancer risk in the heterozygous (AC vs. AA: OR = 0.82, 95% CI = 0.73-0.93), dominant (AC/CC vs. AA: OR = 0.82, 95% CI = 0.72-0.93), and allele contrast models (C vs. A: OR = 0.84, 95% CI = 0.76-0.94). The association was more prominent in Asians and population-based studies. We also found that the rs4245739C allele was associated with decreased MDM4 mRNA expression, especially for Caucasians. Thus the MDM4 rs4245739 A > C polymorphism appears to be associated with decreased cancer risk. These findings would be strengthened by new studies with larger sample sizes and encompassing additional ethnicities.


Assuntos
Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular , Feminino , Genótipo , Humanos , Masculino , Neoplasias/etiologia , Viés de Publicação , RNA Mensageiro/análise , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA