Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108350

RESUMO

Dirigent (DIR) members have been shown to play essential roles in plant growth, development and adaptation to environmental changes. However, to date, there has been no systematic analysis of the DIR members in the genus Oryza. Here, 420 genes were identified from nine rice species to have the conserved DIR domain. Importantly, the cultivated rice species Oryza sativa has more DIR family members than the wild rice species. DIR proteins in rice could be classified into six subfamilies based on phylogeny analysis. Gene duplication event analysis suggests that whole genome/segmental duplication and tandem duplication are the primary drivers for DIR genes' evolution in Oryza, while tandem duplication is the main mechanism of gene family expansion in the DIR-b/d and DIR-c subfamilies. Analysis of the RNA sequencing data indicates that OsjDIR genes respond to a wide range of environmental factors, and most OsjDIR genes have a high expression level in roots. Qualitative reverse transcription PCR assays confirmed the responsiveness of OsjDIR genes to the undersupply of mineral elements, the excess of heavy metals and the infection of Rhizoctonia solani. Furthermore, there exist extensive interactions between DIR family members. Taken together, our results shed light on and provide a research foundation for the further exploration of DIR genes in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Genes de Plantas , Família Multigênica , Sequência de Aminoácidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Duplicação Gênica , Filogenia , Regulação da Expressão Gênica de Plantas
2.
J Integr Plant Biol ; 64(8): 1560-1574, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35665602

RESUMO

Glycogen synthase kinase 3 (GSK3) proteins play key roles in brassinosteroid (BR) signaling during plant growth and development by phosphorylating various substrates. However, how GSK3 protein stability and activity are themselves modulated is not well understood. Here, we demonstrate in vitro and in vivo that C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (OsCPL3), a member of the RNA Pol II CTD phosphatase-like family, physically interacts with OsGSK2 in rice (Oryza sativa). OsCPL3 expression was widely detected in various tissues and organs including roots, leaves and lamina joints, and was induced by exogenous BR treatment. OsCPL3 localized to the nucleus, where it dephosphorylated OsGSK2 at the Ser-222 and Thr-284 residues to modulate its protein turnover and kinase activity, in turn affecting the degradation of BRASSINAZOLE-RESISTANT 1 (BZR1) and BR signaling. Loss of OsCPL3 function resulted in higher OsGSK2 abundance and lower OsBZR1 levels, leading to decreased BR responsiveness and alterations in plant morphology including semi-dwarfism, leaf erectness and grain size, which are of fundamental importance to crop productivity. These results reveal a previously unrecognized role for OsCPL3 and add another layer of complexity to the tightly controlled BR signaling pathway in plants.


Assuntos
Brassinosteroides , Oryza , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA