Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(2): 788-807, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088777

RESUMO

Ultrafast excited-state dynamics of the simplest nitrostilbenes, namely trans-4-nitrostilbene (t-NSB), was studied in solvents of various polarities with ultrafast broadband time-resolved fluorescence and transient absorption spectroscopies, and by quantum-chemical computations. The results revealed that the initially excited S1(ππ*) state deactivation dynamics is strongly influenced by the solvent polarity. Specifically, the t-NSB S1-state lifetime decreases by three orders of magnitude from ∼60 ps in high-polarity solvents to ∼60 fs in nonpolar solvents. The strong solvent-polarity dependence arises from the differences in dipole moments among the S1 and relevant states, including the major intersystem crossing (ISC) receiver triplet states, and therefore, the solvent polarity can modulate their relative energies and ISC rates. In nonpolar solvents, the sub-100 fs lifetime is due to a combination of efficient ISC and internal conversion. In medium-polarity solvents, the S1-state population decays via a competing ISC relaxation mechanism in a biphasic manner, and the ISC rates are found to obey the inverse energy gap law of the strong coupling case. In high-polarity solvents, the S1 state is stabilized to a much lower energy such that ISC becomes energetically infeasible, and the S1 state decays via barrier crossing along the torsion angle of the central ethylenic bond to the nonfluorescent perpendicular configuration. Regardless of the initial S1-state deactivation pathways in various solvents, the excited-state population is ultimately trapped in the metastable T1-state perpendicular configuration, at which a slower ISC occurs to bring the system to the ground state and bifurcate into either trans or cis form of NSB.

2.
Nano Lett ; 23(7): 2502-2510, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926974

RESUMO

Self-propelled micro/nanomotors are emergent intelligent sensors for analyzing extracellular biomarkers in circulating biological fluids. Conventional luminescent motors are often masked by a highly dynamic and scattered environment, creating challenges to characterize biomarkers or subtle binding dynamics. Here we introduce a strategy to amplify subtle signals by coupling strong light-matter interactions on micromotors. A smart whispering-gallery-mode microlaser that can self-propel and analyze extracellular biomarkers is demonstrated through a liquid crystal microdroplet. Lasing spectral responses induced by cavity energy transfer were employed to reflect the abundance of protein biomarkers, generating exclusive molecular labels for cellular profiling of exosomes derived from 3D multicellular cancer spheroids. Finally, a microfluidic biosystem with different tumor-derived exosomes was employed to elaborate its sensing capability in complex environments. The proposed autonomous microlaser exhibits a promising method for both fundamental biological science and applications in drug screening, phenotyping, and organ-on-chip applications.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Luminescência , Microfluídica
3.
Nano Lett ; 22(22): 8949-8956, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367840

RESUMO

Amyloidogenesis is a critical hallmark for many neurodegenerative diseases and drug screening; however, identifying intermediate states of protein aggregates at an earlier stage remains challenging. Herein, we developed a peptide-encapsulated droplet microlaser to monitor the amyloidogenesis process and evaluate the efficacy of anti-amyloid drugs. The lasing wavelength changes accordingly with the amyloid peptide folding behaviors and nanostructure conformations in the droplet resonator. A 3D deep-learning strategy was developed to directly image minute spectral shifts through a far-field camera. By extracting 1D color information and 2D features from the laser images, the progression of the amyloidogenesis process could be monitored using arrays of laser images from microdroplets. The training set, validation set, and test set of the multimodal learning model achieved outstanding classification accuracies of over 95%. This study shows the great potential of deep-learning-empowered peptide microlaser yields for protein misfolding studies and paves the way for new possibilities for high-throughput imaging of cavity biosensing.


Assuntos
Amiloidose , Aprendizado Profundo , Humanos , Imageamento Tridimensional/métodos , Amiloide/metabolismo , Amiloidose/metabolismo
4.
Nano Lett ; 22(3): 1425-1432, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817181

RESUMO

Optical vortices with tunable properties in multiple dimensions are highly desirable in modern photonics, particularly for broadly tunable wavelengths and topological charges at the micrometer scale. Compared to solid-state approaches, here we demonstrate tunable optical vortices through the fusion of optofluidics and vortex beams in which the handedness, topological charges, and lasing wavelengths could be fully adjusted and dynamically controlled. Nanogroove structures inscribed in Fabry-Pérot optofluidic microcavities were proposed to generate optical vortices by converting Hermite-Gaussian laser modes. Topological charges could be controlled by tuning the lengths of the nanogroove structures. Vortex laser beams spanning a wide spectral band (430-630 nm) were achieved by alternating different liquid gain materials. Finally, dynamic switching of vortex laser wavelengths in real-time was realized through an optofluidic vortex microlaser device. The findings provide a robust yet flexible approach for generating on-chip vortex sources with multiple dimensions, high tunability, and reconfigurability.

5.
ACS Appl Mater Interfaces ; 15(10): 13343-13352, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880165

RESUMO

Antireflective (AR) surface texturing is a feasible way to boost the light absorption of photosensitive materials and devices. As a plasma-free etching method, metal-assisted chemical etching (MacEtch) has been employed for fabricating GaN AR surface texturing. However, the poor etching efficiency of typical MacEtch hinders the demonstration of highly responsive photodetectors on an undoped GaN wafer. In addition, GaN MacEtch requires metal mask patterning by lithography, which leads to a huge processing complexity when the dimension of GaN AR nanostructure scales down to the submicron range. In this work, we have developed a facile texturing method of forming a GaN nanoridge surface on an undoped GaN thin film by a lithography-free submicron mask-patterning process via thermal dewetting of platinum. The nanoridge surface texturing effectively reduces the surface reflection in the ultraviolet (UV) regime, which can be translated to a 6-fold enhancement in responsivity (i.e., 115 A/W) of the photodiode at 365 nm. The results demonstrated in this work show that MacEtch can offer a viable route for enhanced UV light-matter interaction and surface engineering in GaN UV optoelectronic devices.

6.
Adv Mater ; 34(10): e2107809, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34918404

RESUMO

Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.


Assuntos
Microgéis , Materiais Biocompatíveis , Hidrogéis , Lasers
7.
ACS Appl Mater Interfaces ; 14(19): 22278-22286, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35523210

RESUMO

Relaxor ferroelectric-based energy storage systems are promising candidates for advanced applications as a result of their fast speed and high energy storage density. In the research field of ferroelectrics and relaxor ferroelectrics, the concept of solid solution is widely adopted to modify the overall properties and acquire superior performance. However, the combination between antiferroelectric and paraelectric materials was less studied and discussed. In this study, paraelectric barium hafnate (BaHfO3) and antiferroelectric lead hafnate (PbHfO3) are selected to demonstrate such a combination. A paraelectric to relaxor ferroelectric, to ferroelectric, and to antiferroelectric transition is observed by varying the composition x in the (Ba1-xPbx)HfO3 solid solution from 0 to 100%. It is noteworthy that ferroelectric phases can be realized without primal ferroelectric material. This study creates an original solid solution system with a rich spectrum of competing phases and demonstrates an approach to design relaxor ferroelectrics for energy storage applications and beyond.

8.
ACS Nano ; 16(1): 378-385, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978803

RESUMO

Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices.

9.
ACS Appl Mater Interfaces ; 13(51): 61396-61403, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34851080

RESUMO

We report an enhanced performance of flexible titanium nitride/germanium-tin (TiN/GeSn) photodetectors (PDs) with an extended photodetection range based on sub-bandgap absorption. Single-crystalline GeSn membranes transfer-printed on poly(ethylene terephthalate) are integrated with plasmonic TiN to form a TiN/GeSn heterojunction. Formation of the heterojunction creates a Schottky contact between the TiN and GeSn. A Schottky barrier height of 0.49 eV extends the photodetection wavelength to 2530 nm and further enhances the light absorption capability within the detection range. In addition, finite-difference time-domain simulation proves that the integration of TiN and GeSn could enhance average absorption from 0.13 to 0.33 in the near-infrared (NIR) region (e.g., 1400-2000 nm) and more than 70% of light is absorbed in TiN. The responsivity of the fabricated TiN/GeSn PDs is increased from 30 to 148.5 mA W-1 at 1550 nm. There is also an ∼180 nm extension in the optical absorption wavelength of the flexible TiN/GeSn PD. The enhanced performance of the device is attributed to the absorption and separation of plasmonic hot carriers via TiN and the TiN/GeSn junction, respectively. The effect of external uniaxial strain is also investigated. A tensile strain of 0.3% could further increase the responsivity from 148.5 to 218 mA W-1, while it is decreased to 102 mA W-1 by 0.25% compressive strain. In addition, the devices maintain stable performance after multiple and long bending cycles. Our results provide a robust and cost-effective method to extend the NIR photodetection capability of flexible group IV PDs.

10.
J Phys Chem Lett ; 12(24): 5813-5820, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34137612

RESUMO

A two-dimensional (2D) Ga2O3 monolayer with an asymmetric quintuple-layer configuration was reported as a novel 2D material with excellent stability and strain tunability. This unusual asymmetrical structure opens up new possibilities for improving the selectivity and sensitivity of gas sensors by using selected surface orientations. In this study, the surface adsorptions of nine molecular gases, namely, O2, CO2, CO, SO2, NO2, H2S, NO, NH3, and H2O, on the 2D Ga2O3 monolayer are systematically investigated through first-principles calculations. The intrinsic dipole of the system leads to different adsorption energies and changes in the electronic structures between the top- and bottom-surface adsorptions. Analyses of electronic structures and charge transport calculations indicate a potential application of the 2D Ga2O3 monolayer as a room-temperature NO gas-sensing device with high sensitivity and tunable adsorption energy using plenary strain-induced lattice distortion.

11.
ACS Appl Mater Interfaces ; 12(27): 30659-30669, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519544

RESUMO

A novel two-dimensional (2D) Ga2O3 monolayer was constructed and systematically investigated by first-principles calculations. The 2D Ga2O3 has an asymmetric configuration with a quintuple-layer atomic structure, the same as the well-studied α-In2Se3, and is expected to be experimentally synthesized. The dynamic and thermodynamic calculations show excellent stability properties of this monolayer material. The relaxed Ga2O3 monolayer has an indirect band gap of 3.16 eV, smaller than that of ß-Ga2O3 bulk, and shows tunable electronic and optoelectronic properties with biaxial strain engineering. An attractive feature is that the asymmetric configuration spontaneously introduces an intrinsic dipole and thus the electrostatic potential difference between the top and bottom surfaces of the Ga2O3 monolayer, which helps to separate photon-generated electrons and holes within the quintuple-layer structure. By applying compressive strain, the Ga2O3 monolayer can be converted to a direct band gap semiconductor with a wider gap reaching 3.5 eV. Also, enhancement of hybridization between orbitals leads to an increase of electron mobility, from the initial 5000 to 7000 cm2 V-1 s-1. Excellent optical absorption ability is confirmed, which can be effectively tuned by strain engineering. With superior stability, as well as strain-tunable electronic properties, carrier mobility, and optical absorption, the studied novel Ga2O3 monolayer sheds light on low-dimensional electronic and optoelectronic device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA