Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Opt Express ; 31(11): 18290-18299, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381542

RESUMO

Stimulated Raman scattering (SRS) microscopy is increasingly employed for highly specific, label-free, and high-speed bioimaging. Despite its benefits, SRS is susceptible to spurious background signals caused by competing effects, which lower the possible imaging contrast and sensitivity. An efficient approach to suppress these undesired background signals is frequency-modulation (FM) SRS, which exploits the competing effects' weak spectral dependence compared to the SRS signal's high spectral specificity. We propose an FM-SRS scheme realized with an acousto-optic tunable filter, which presents a few advantages compared to other solutions presented in the literature. In particular, it can perform automated measurements from the fingerprint to the CH-stretching region of the vibrational spectrum without any manual adjustment of the optical setup. Moreover, it allows simple all-electronic control of the spectral separation and relative intensities of the pair of probed wavenumbers.

2.
Opt Express ; 29(2): 2378-2386, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726433

RESUMO

We present a novel configuration for high spectral resolution multiplexing acquisition based on the Hadamard transform in stimulated Raman scattering (SRS) microscopy. The broadband tunable output of a dual-beam femtosecond laser is filtered by a fast, narrowband, and multi-channel acousto-optic tunable filter (AOTF). By turning on and off different subsets of its 8 independent channels, the AOTF generates the spectral masks given by the Hadamard matrix. We demonstrate a seamless and automated operation in the Raman fingerprint and CH-stretch regions. In the presence of additive noise, the spectral measurements using the multiplexed method show the same signal-to-noise ratio of conventional single-wavenumber acquisitions performed with 4 times longer integration time.

3.
Opt Lett ; 46(19): 4968-4971, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598245

RESUMO

In this Letter, we report a high-efficiency, miniaturized, ultra-fast coherent beam, combined with 3D-printed micro-optics directly on the tip of a multicore fiber bundle. The highly compact device footprint (180 µm in diameter) facilitates its incorporation into a minimally invasive ultra-thin nonlinear endoscope to perform two-photon imaging.


Assuntos
Endoscópios , Endoscopia , Endoscopia Gastrointestinal , Óptica e Fotônica , Fótons , Impressão Tridimensional
4.
Stem Cells ; 33(1): 35-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186497

RESUMO

The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs.


Assuntos
Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Análise Espectral Raman/métodos , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , Gotículas Lipídicas , Camundongos , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt
5.
Nano Lett ; 15(1): 386-91, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25422163

RESUMO

Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 µm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

6.
Opt Lett ; 39(3): 571-3, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487868

RESUMO

We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The calculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison. The fine agreement between the two approaches demonstrates the validity of our method.

7.
Commun Biol ; 7(1): 154, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321111

RESUMO

Mapping the cellular refractive index (RI) is a central task for research involving the composition of microorganisms and the development of models providing automated medical screenings with accuracy beyond 95%. These models require significantly enhancing the state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high throughput. Here, we present a machine-learning-based technique that obtains a biological specimen's real-time RI and thickness maps from a single image acquired with a conventional color camera. This technology leverages a suitably engineered nanostructured membrane that stretches a biological analyte over its surface and absorbs transmitted light, generating complex reflection spectra from each sample point. The technique does not need pre-existing sample knowledge. It achieves 10-4 RI sensitivity and sub-nanometer thickness resolution on diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional reconstruction of the cellular regions with a characteristic length of 30 µm. These results can facilitate the development of real-time label-free technologies for biomedical studies on microscopic multicellular dynamics.


Assuntos
Refratometria , Humanos , Células HCT116
8.
J Extracell Biol ; 3(9): e162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257626

RESUMO

Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results demonstrated that external stimuli such as radiation, pH, hypoxia or lipid-interfering drugs, known to affect the number of LDs/cell, similarly influenced sEV secretion. Importantly, through multiple omics data, at both mRNA and protein levels, we revealed RAB5C as a potential important molecular player behind this organelle connection. Altogether, the potential to fine-tune sEV biogenesis by targeting LDs could significantly impact the amount, cargos and properties of these sEVs, opening new clinical perspectives.

9.
Opt Express ; 21(6): 7538-48, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546136

RESUMO

We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator.


Assuntos
Campos Eletromagnéticos , Modelos Teóricos , Espalhamento de Radiação , Simulação por Computador
10.
Sci Total Environ ; 892: 164671, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290646

RESUMO

The abundance of anthropogenic debris dispersed in the environment is exponentially growing, raising concerns about marine life and human exposure to microplastics. Microfibers are the most abundant microplastic type in the environment. However, recent research suggests that most microfibers dispersed in the environment are not made of synthetic polymers. In this work, we systematically tested this assumption by determining the man-made or natural origin of microfibers found in different environments, including surface waters, sediments at depths >5000 m and highly sensitive habitats like mangroves and seagrass, and treated water using stimulated Raman scattering (SRS) microscopy. Our findings show that ¾th of analyzed microfibers are of natural origin. One plastic fiber is estimated per every 50 L in surface seawater, every 5 L in desalinated drinking water, every 3 g in deep sea sediments and every 27 g in coastal sediments. Synthetic fibers were significantly larger in surface seawaters compared to organic fibers due to higher resistance to solar radiation. These results emphasize the necessity of using spectroscopical methods to assess the origin of environmental microfibers to accurately estimate the abundance of synthetic materials in the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Plásticos , Monitoramento Ambiental/métodos , Água do Mar , Sedimentos Geológicos/química
11.
Small ; 8(18): 2886-94, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22761002

RESUMO

This study aims to adoptively reduce the major histocompatibility complex class I (MHC-I) molecule surface expression of cancer cells by exposure to microfluid shear stress and a monoclonal antibody. A microfluidic system is developed and tumor cells are injected at different flow rates. The bottom surface of the microfluidic system is biofunctionalized with antibodies (W6/32) specific for the MHC-I molecules with a simple method based on microfluidic protocols. The antibodies promote binding between the bottom surface and the MHC-I molecules on the tumor cell membrane. The cells are injected at an optimized flow rate, then roll on the bottom surface and are subjected to shear stress. The stress is localized and enhanced on the part of the membrane where MHC-I proteins are expressed, since they stick to the antibodies of the system. The localized stress allows a stripping effect and consequent reduction of the MHC-I expression. It is shown that it is possible to specifically treat and recover eukaryotic cells without damaging the biological samples. MHC-I molecule expression on treated and control cell surfaces is measured on tumor and healthy cells. After the cell rolling treatment a clear reduction of MHC-I levels on the tumor cell membrane is observed, whereas no changes are observed on healthy cells (monocytes). The MHC-I reduction is investigated and the possibility that the developed system could induce a loss of these molecules from the tumor cell surface is addressed. The percentage of living tumor cells (viability) that remain after the treatment is measured. The changes induced by the microfluidic system are analyzed by fluorescence-activated cell sorting and confocal microscopy. Cytotoxicity tests show a relevant increased susceptibility of natural killer (NK) cells on microchip-treated tumor cells.


Assuntos
Anticorpos Monoclonais/imunologia , Células Matadoras Naturais/imunologia , Técnicas Analíticas Microfluídicas/instrumentação , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Testes Imunológicos de Citotoxicidade , Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Ligação Proteica
12.
Opt Lett ; 37(4): 545-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344101

RESUMO

We report on the possibility of realizing a radial mode on a metallic conical structure by means of a linearly polarized incident wave. This result is utilized for observing surface plasmon polaritons adiabatic compression on a tapered conical nanostructure. The ingredients for radial mode generation are described in terms of phase-matching of the components of the electromagnetic field. We conclude by showing the robustness of this approach, explaining the polaritonic behavior as a function of the device geometry.


Assuntos
Ressonância de Plasmônio de Superfície/instrumentação , Campos Eletromagnéticos , Metais/química , Modelos Teóricos , Nanoestruturas/química , Óptica e Fotônica , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
13.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551069

RESUMO

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light-electron microscopy and by correlative Raman imaging-scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an energy-dispersive X-ray spectroscopy module. This procedure correlated cellular morphology, chemical properties, and spatial distribution from the same region of interest, and in this work, we presented the application of CREL for the analysis of LDs within patient-derived melanoma CSCs (MCSCs).


Assuntos
Gotículas Lipídicas , Melanoma , Humanos , Elétrons , Microscopia Eletrônica de Varredura , Análise Espectral Raman/métodos , Células-Tronco Neoplásicas
14.
Opt Express ; 19(27): 26088-94, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274197

RESUMO

The distinctive ability of nanometallic structures to manipulate light at the nanoscale has recently promoted their use for a spectacular set of applications in a wide range of areas of research including artificial optical materials, nano-imaging, biosensing, and nonlinear optics. Here we transfer this concept to the terahertz spectral region, demonstrating a metal nanostructure in shape of a dipole nanoantenna, which can efficiently resonate at terahertz frequencies, showing an effective cross section >100 times larger than its geometrical area, and a field enhancement factor of ~280, confined on a lateral section of ~λ/1,000. These results lead to immediate applications in terahertz artificial materials exhibiting giant dichroism, suggest the use of dipole nanoantennas in nanostructure-based terahertz metamaterials, and pave the way for nanoantenna-enhanced terahertz few-molecule spectroscopy and localized terahertz nonlinear optics.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Radiação Terahertz , Teste de Materiais
15.
Analyst ; 136(21): 4402-8, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21879030

RESUMO

Microinjection techniques and Raman spectroscopy have been combined to provide a new methodology to investigate the cytotoxic effects due to the interaction of nanomaterials with cells. In the present work, this novel technique has been used to investigate the effects of Ag and Fe(3)O(4) nanoparticles on Hela cells. The nanoparticles are microinjected inside the cells and these latter ones are probed by means of Raman spectroscopy after a short incubation time, in order to highlight the first and impulsive mechanisms developed by the cells to counteract the presence of the nanoparticles. The results put in evidence a different behaviour of the cells treated with nanoparticles in comparison with the control cells; these differences are supposed to be generated by an emerging oxidative stress due to the nanoparticles. The achieved results demonstrate the suitability of the proposed method as a new tool for nanotoxicity studies.


Assuntos
Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Análise Espectral Raman/métodos , Linhagem Celular , Células HeLa , Humanos , Nanopartículas Metálicas/química , Microinjeções/métodos , Nanoestruturas , Estresse Oxidativo , Toxicologia/métodos
16.
Environ Pollut ; 267: 115640, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254658

RESUMO

Microfibers are reported as the most abundant microparticle type in the environment. Their small size and light weight allow easy and fast distribution, but also make it challenging to determine their chemical composition. Vibrational microspectroscopy methods as infrared and spontaneous Raman microscopy have been widely used for the identification of environmental microparticles. However, only few studies report on the identification of microfibers, mainly due to difficulties caused by their small diameter. Here we present the use of Stimulated Raman Scattering (SRS) microscopy for fast and reliable classification of microfibers from environmental samples. SRS microscopy features high sensitivity and has the potential to be faster than other vibrational microspectroscopy methods. As a proof of principle, we analyzed fibers extracted from the fish gastrointestinal (GIT) tract, deep-sea and coastal sediments, surface seawater and drinking water. Challenges were faced while measuring fibers from the fish GIT, due to the acidic degradation they undergo. However, the main vibrational peaks were still recognizable and sufficient to determine the natural or synthetic origin of the fibers. Notably, our results are in accordance to other recent studies showing that the majority of the analyzed environmental fibers has a natural origin. Our findings suggest that advanced spectroscopic methods must be used for estimation of the plastic fibers concentration in the environment.


Assuntos
Microscopia Óptica não Linear , Vibração , Animais , Plásticos , Água do Mar , Análise Espectral Raman
17.
Genes Dis ; 7(4): 620-635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33335962

RESUMO

Lipid Droplets (LDs) are emerging as crucial players in colon cancer development and maintenance. Their expression has been associated with high tumorigenicity in Cancer Stem Cells (CSCs), so that they have been proposed as a new functional marker in Colorectal Cancer Stem Cells (CR-CSCs). They are also indirectly involved in the modulation of the tumor microenvironment through the production of pro-inflammatory molecules. There is growing evidence that a possible connection between metabolic alterations and malignant transformation exists, although the effects of nutrients, primarily glucose, on the CSC behavior are still mostly unexplored. Glucose is an essential fuel for cancer cells, and the connections with LDs in the healthy and CSC populations merit to be more deeply investigated. Here, we showed that a high glucose concentration activated the PI3K/AKT pathway and increased the expression of CD133 and CD44v6 CSC markers. Additionally, glucose was responsible for the increased amount of Reactive Oxygen Species (ROS) and LDs in both healthy and CR-CSC samples. We also investigated the gene modulations following the HG treatment and found out that the healthy cell gene profile was the most affected. Lastly, Atorvastatin, a lipid-lowering drug, induced the highest mortality on CR-CSCs without affecting the healthy counterpart.

18.
Elife ; 92020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048047

RESUMO

Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Tálamo/diagnóstico por imagem , Animais , Comportamento Animal , Endoscópios , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/fisiologia , Tálamo/fisiologia
19.
J Biophotonics ; 12(9): e201900028, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081280

RESUMO

Stimulated Raman scattering (SRS) microscopy is a label-free method generating images based on chemical contrast within samples, and has already shown its great potential for high-sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio-samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub-cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto-optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon-Hydrogen (CH)-stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm-1 , is demonstrated.


Assuntos
Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Carbono/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Hidrogênio/química , Oscilometria , Polimetil Metacrilato/química , Poliestirenos/química , Vibração
20.
Biomed Opt Express ; 7(10): 3958-3967, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867707

RESUMO

Patterned illumination through the phase modulation of light is increasingly recognized as a powerful tool to investigate biological tissues in combination with two-photon excitation and light-sensitive molecules. However, to date two-photon patterned illumination has only been coupled to traditional microscope objectives, thus limiting the applicability of these methods to superficial biological structures. Here, we show that phase modulation can be used to efficiently project complex two-photon light patterns, including arrays of points and large shapes, in the focal plane of graded index (GRIN) lenses. Moreover, using this approach in combination with the genetically encoded calcium indicator GCaMP6, we validate our system performing scanless functional imaging in rodent hippocampal networks in vivo ~1.2 mm below the brain surface. Our results open the way to the application of patterned illumination approaches to deep regions of highly scattering biological tissues, such as the mammalian brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA