Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Sci Technol ; 57(9): 3538-3548, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802504

RESUMO

Iodized table salt provides iodide that is essential for health. However, during cooking, we found that chloramine residuals in tap water can react with iodide in table salt and organic matter in pasta to form iodinated disinfection byproducts (I-DBPs). While naturally occurring iodide in source waters is known to react with chloramine and dissolved organic carbon (e.g., humic acid) during the treatment of drinking water, this is the first study to investigate I-DBP formation from cooking real food with iodized table salt and chloraminated tap water. Matrix effects from the pasta posed an analytical challenge, necessitating the development of a new method for sensitive and reproducible measurements. The optimized method utilized sample cleanup with Captiva EMR-Lipid sorbent, extraction with ethyl acetate, standard addition calibration, and analysis using gas chromatography (GC)-mass spectrometry (MS)/MS. Using this method, seven I-DBPs, including six iodo-trihalomethanes (I-THMs) and iodoacetonitrile, were detected when iodized table salt was used to cook pasta, while no I-DBPs were formed with Kosher or Himalayan salts. Total I-THM levels of 11.1 ng/g in pasta combined with cooking water were measured, with triiodomethane and chlorodiiodomethane dominant, at 6.7 and 1.3 ng/g, respectively. Calculated cytotoxicity and genotoxicity of I-THMs for the pasta with cooking water were 126- and 18-fold, respectively, compared to the corresponding chloraminated tap water. However, when the cooked pasta was separated (strained) from the pasta water, chlorodiiodomethane was the dominant I-THM, and lower levels of total I-THMs (retaining 30% of the I-THMs) and calculated toxicity were observed. This study highlights an overlooked source of exposure to toxic I-DBPs. At the same time, the formation of I-DBPs can be avoided by boiling the pasta without a lid and adding iodized salt after cooking.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Cloreto de Sódio na Dieta , Cloraminas/análise , Iodetos/química , Água Potável/análise , Água Potável/química , Halogenação , Culinária , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Desinfetantes/análise
2.
Environ Sci Technol ; 56(10): 6103-6112, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734715

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are widely used anthropogenic chemicals. For environmental and toxicological analysis, it is important to understand the stability of PFASs, including novel per- and polyfluoroalkyl ether acids (PFEAs), in commonly used solvents. In this study, we investigated the effects of PFAS characteristics, solvent type, water-to-organic solvent ratio, and temperature on the stability of 21 PFASs including 18 PFEAs. None of the studied PFASs showed measurable degradation in deionized water, methanol, or isopropyl alcohol over 30 days; however, nine PFEAs degraded in the polar aprotic solvents acetonitrile, acetone, and dimethyl sulfoxide (DMSO). PFEA degradation followed first-order kinetics, and first-order rate constants increased with increasing temperature and with decreasing water-to-organic solvent ratio. Monoethers with a carboxylic acid functional group adjacent to a tertiary carbon (>CF-COOH) degraded more rapidly than multiethers in which the carboxylic acid moiety was adjacent to repeating -CF2O- groups. In contrast, monoethers with a carboxylic acid moiety adjacent to a secondary carbon (-CF2-COOH) were stable in all tested solvents. Using high-resolution mass spectrometry, we determined that PFEAs with a >CF-COOH group were stoichiometrically decarboxylated in aprotic solvents and formed products with a >CFH group; e.g., hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX), HFPO-trimer acid, and HFPO-tetramer acid were stoichiometrically converted to Fluoroethers E-1, E-2, and E-3, respectively. PFEA degradation results highlight the importance of solvent choice when preparing dosing solutions and performing extractions for environmental and toxicological assessments of PFEAs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Carbono , Ácidos Carboxílicos , Éter , Éteres , Fluorocarbonos/análise , Solventes , Água , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 56(12): 8245-8254, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638116

RESUMO

Nitrification and biofilm growth within distribution systems remain major issues for drinking water treatment plants utilizing chloramine disinfection. Many chloraminated plants periodically switch to chlorine disinfection for several weeks to mitigate these issues, known as "chlorine burns". The evaluation of disinfection byproduct (DBP) formation during chlorine burns beyond regulated DBPs is scarce. Here, we quantified an extensive suite of 80 regulated and emerging, unregulated DBPs from 10 DBP classes in drinking water from two U.S. drinking water plants during chlorine burn and chloramination treatments. Total organic halogen (TOX), including total organic chlorine, total organic bromine, and total organic iodine, was also quantified, and mammalian cell cytotoxicity of whole water mixtures was assessed in chlorine burn waters for the first time. TOX and most DBPs increased in concentration during chlorine burns, and one emerging DBP, trichloroacetaldehyde, reached 99 µg/L. THMs and HAAs reached concentrations of 249 and 271 µg/L, respectively. Two highly cytotoxic nitrogenous DBP classes, haloacetamides and haloacetonitriles, increased during chlorine burns, reaching up to 14.2 and 19.3 µg/L, respectively. Cytotoxicity did not always increase from chloramine treatment to chlorine burn, but a 100% increase in cytotoxicity was observed for one plant. These data highlight that consumer DBP exposure during chlorine burns can be substantial.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloraminas , Cloro , Desinfecção , Halogenação , Halogênios , Mamíferos , Trialometanos , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 56(1): 392-402, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34910457

RESUMO

This study reveals key disinfection byproduct (DBP) toxicity drivers in drinking water across the United States. DBPs, which are ubiquitous in drinking water, form by the reaction of disinfectants, organic matter, bromide, and iodide and are generally present at 100-1000× higher concentrations than other contaminants. DBPs are linked to bladder cancer, miscarriage, and birth defects in human epidemiologic studies, but it is not known as to which DBPs are responsible. We report the most comprehensive investigation of drinking water toxicity to date, with measurements of extracted whole-water mammalian cell chronic cytotoxicity, over 70 regulated and priority unregulated DBPs, and total organic chlorine, bromine, and iodine, revealing a more complete picture of toxicity drivers. A variety of impacted waters were investigated, including those impacted by wastewater, agriculture, and seawater. The results revealed that unregulated haloacetonitriles, particularly dihaloacetonitriles, are important toxicity drivers. In seawater-impacted water treated with chloramine, toxicity was driven by iodinated DBPs, particularly iodoacetic acids. In chlorinated waters, the combined total organic chlorine and bromine was highly and significantly correlated with toxicity (r = 0.94, P < 0.01); in chloraminated waters, total organic iodine was highly and significantly correlated with toxicity (r = 0.80, P < 0.001). These results indicate that haloacetonitriles and iodoacetic acids should be prioritized in future research for potential regulation consideration.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cloro , Desinfetantes/toxicidade , Desinfecção , Halogenação , Humanos , Mamíferos , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
5.
J Environ Sci (China) ; 117: 253-263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725077

RESUMO

Although the health benefits of swimming are well-documented, health effects such as asthma and bladder cancer are linked to disinfection by-products (DBPs) in pool water. DBPs are formed from the reaction of disinfectants such as chlorine (Cl) or bromine (Br) with organics in the water. Our previous study (Daiber et al., Environ. Sci. Technol. 50, 6652; 2016) found correlations between the concentrations of classes of DBPs and the mutagenic potencies of waters from chlorinated or brominated swimming pools and spas. We extended this study by identifying significantly different concentrations of 21 individual DBPs in brominated or chlorinated pool and spa waters as well as identifying which DBPs and additional DBP classes were most associated with the mutagenicity of these waters. Using data from our previous study, we found that among 21 DBPs analyzed in 21 pool and spa waters, the concentration of bromoacetic acid was significantly higher in Br-waters versus Cl-waters, whereas the concentration of trichloroacetic acid was significantly higher in Cl-waters. Five Br-DBPs (tribromomethane, dibromochloroacetic acid, dibromoacetonitrile, bromoacetic acid, and tribromoacetic acid) had significantly higher concentrations in Br-spa versus Cl-spa waters. Cl-pools had significantly higher concentrations of Cl-DBPs (trichloroacetaldehyde, trichloromethane, dichloroacetic acid, and chloroacetic acid), whereas Br-pools had significantly higher concentrations of Br-DBPs (tribromomethane, dibromoacetic acid, dibromoacetonitrile, and tribromoacetic acid). The concentrations of the sum of all 4 trihalomethanes, all 11 Br-DBPs, and all 5 nitrogen-containing DBPs were each significantly higher in brominated than in chlorinated pools and spas. The 8 Br-DBPs were the only DBPs whose individual concentrations were significantly correlated with the mutagenic potencies of the pool and spa waters. These results, along with those from our earlier study, highlight the importance of Br-DBPs in the mutagenicity of these recreational waters.


Assuntos
Desinfetantes , Piscinas , Poluentes Químicos da Água , Purificação da Água , Bromo , Cloro/análise , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção/métodos , Halogenação , Mutagênicos/análise , Mutagênicos/toxicidade , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 55(5): 2908-2918, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594894

RESUMO

Swimming pools are commonly treated with chlorine, which reacts with the natural organic matter and organic matter introduced by swimmers and form disinfection byproducts (DBPs) that are associated with respiratory-related issues, including asthma, in avid swimmers. We investigated a complementary disinfectant to chlorine, copper-silver ionization (CSI), with the aim of lowering the amount of chlorine used in pools and limiting health risks from DBPs. We sampled an indoor and outdoor pool treated with CSI-chlorine during the swimming season in 2017-2018 and measured 71 DBPs, speciated total organic halogen, in vitro mammalian cell cytotoxicity, and N-acetyl-l-cysteine (NAC) thiol reactivity as a cytotoxicity predictor. Controlled, simulated swimming pools were also investigated. Emerging DBP concentrations decreased by as much as 80% and cytotoxicity decreased as much as 70% in the indoor pool when a lower chlorine residual (1.0 mg/L) and CSI was used. Some DBPs were quantified for the first time in pools, including chloroacetaldehyde (up to 10.6 µg/L), the most cytotoxic haloacetaldehyde studied to date and a major driver of the measured cytotoxicity in this study. Three highly toxic iodinated haloacetic acids (iodoacetic acid, bromoiodoacetic acid, and chloroiodoacetic acid) were also quantified in pools for the first time. We also found that the NAC thiol reactivity was significantly correlated to cytotoxicity, which could be useful for predicting the cytotoxicity of swimming pool waters in future studies.


Assuntos
Desinfetantes , Piscinas , Poluentes Químicos da Água , Animais , Cloro , Cobre/toxicidade , Desinfetantes/toxicidade , Desinfecção , Prata , Trialometanos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Anal Chem ; 92(4): 3058-3068, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31950829

RESUMO

Disinfection byproducts (DBPs) are a ubiquitous source of chemical exposure in drinking water and have been associated with serious health impacts in human epidemiologic studies. While toxicology studies have pinpointed DBPs with the greatest toxic potency, analytical methods have been lacking for quantifying complete classes of most toxic DBPs at sufficiently low quantification limits (ng/L). This new method reports the parts-per-trillion quantification for 61 toxicologically significant DBPs from 7 different chemical classes, including unregulated iodinated haloacetic acids (HAAs) and trihalomethanes (THMs), haloacetaldehydes, haloketones, haloacetonitriles, halonitromethanes, and haloacetamides, in addition to regulated HAAs and THMs. The final optimized method uses salt-assisted liquid-liquid extraction in a single extraction method for a wide range of DBPs, producing the lowest method detection limits to-date for many compounds, including highly toxic iodinated, brominated, and nitrogen-containing DBPs. Extracts were divided for the analysis of the HAAs (including iodinated HAAs) by diazomethane derivatization and analysis using a GC-triple quadrupole mass spectrometer with multiple reaction monitoring, resulting in higher signal-to-noise ratios, greater selectivity, and improved detection of these compounds. The remaining DBPs were analyzed using a GC-single quadrupole mass spectrometer with selected ion monitoring, utilizing a multimode inlet allowed for lower injection temperatures to allow the analysis of thermally labile DBPs. Finally, the use of a specialty-phase GC column (Restek Rtx-200) significantly improved peak shapes, which improved separations and lowered detection limits. Method detection limits for most DBPs were between 15 and 100 ng/L, and relative standard deviations in tap water samples were mostly between 0.2 and 30%. DBP concentrations in real samples ranged from 40 to 17 760 ng/L for this study.


Assuntos
Brometos/análise , Cloretos/análise , Água Potável/análise , Iodetos/análise , Polissacarídeos/análise , Poluentes Químicos da Água/análise , Extração Líquido-Líquido , Extração em Fase Sólida
8.
Environ Sci Technol ; 54(15): 9374-9386, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32600038

RESUMO

Introduction of oil and gas extraction wastewaters (OGWs) to surface water leads to elevated halide levels from geogenic bromide and iodide, as well as enhanced formation of brominated and iodinated disinfection byproducts (DBPs) when treated. OGWs contain high levels of chemical additives used to optimize extraction activities, such as surfactants, which have the potential to serve as organic DBP precursors in OGW-impacted water sources. We report the first identification of olefin sulfonate surfactant-derived DBPs from laboratory-disinfected gas extraction wastewater. Over 300 sulfur-containing DBPs, with 43 unique molecular formulas, were found by high-resolution mass spectrometry, following bench-scale chlor(am)ination. DBPs consisted of mostly brominated species, including bromohydrin sulfonates, dihalo-bromosulfonates, and bromosultone sulfonates, with chlorinated/iodinated analogues formed to a lesser extent. Disinfection of a commercial C12-olefin sulfonate surfactant mixture revealed dodecene sulfonate as a likely precursor for most detected DBPs; disulfur-containing DBPs, like bromosultone sulfonate and bromohydrin disulfonate, originated from olefin disulfonate species, present as side-products of olefin sulfonate production. Disinfection of wastewaters increased mammalian cytotoxicity several orders of magnitude, with chloraminated water being more toxic. This finding is important to OGW-impacted source waters because drinking water plants with high-bromide source waters may switch to chloramination to meet DBP regulations.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Desinfetantes/análise , Desinfecção , Halogenação , Espectrometria de Massas , Enxofre , Tensoativos , Águas Residuárias , Poluentes Químicos da Água/análise
9.
J Environ Sci (China) ; 89: 90-101, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31892405

RESUMO

This study investigated the speciation of halogen-specific total organic halogen and disinfection byproducts (DBPs) upon chlorination of natural organic matter (NOM) in the presence of iopamidol and bromide (Br-). Experiments were conducted with low bromide source waters with different NOM characteristics from Northeast Ohio, USA and varied spiked levels of bromide (2-30 µmol/L) and iopamidol (1-5 µmol/L). Iopamidol was found to be a direct precursor to trihalomethane (THM) and haloacetic acid formation, and in the presence of Br- favored brominated analogs. The concentration and speciation of DBPs formed were impacted by iopamidol and bromide concentrations, as well as the presence of NOM. As iopamidol increased the concentration of iodinated DBPs (iodo-DBPs) and THMs increased. However, as Br- concentrations increased, the concentrations of non-brominated iodo- and chloro-DBPs decreased while brominated-DBPs increased. Regardless of the concentration of either iopamidol or bromide, bromochloroiodomethane (CHBrClI) was the most predominant iodo-DBP formed except at the lowest bromide concentration studied. At relevant concentrations of iopamidol (1 µmol/L) and bromide (2 µmol/L), significant quantities of highly toxic iodinated and brominated DBPs were formed. However, the rapid oxidation and incorporation of bromide appear to inhibit iodo-DBP formation under conditions relevant to drinking water treatment.


Assuntos
Brometos/análise , Desinfetantes , Iopamidol/análise , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Halogênios , Trialometanos
10.
Environ Sci Technol ; 53(10): 5987-5999, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31038939

RESUMO

Granular activated carbon (GAC) adsorption is well-established for controlling regulated disinfection byproducts (DBPs), but its effectiveness for unregulated DBPs and DBP-associated toxicity is unclear. In this study, GAC treatment was evaluated at three full-scale chlorination drinking water treatment plants over different GAC service lives for controlling 61 unregulated DBPs, 9 regulated DBPs, and speciated total organic halogen (total organic chlorine, bromine, and iodine). The plants represented a range of impacts, including algal, agricultural, and industrial wastewater. This study represents the most extensive full-scale study of its kind and seeks to address the question of whether GAC can make drinking water safer from a DBP perspective. Overall, GAC was effective for removing DBP precursors and reducing DBP formation and total organic halogen, even after >22 000 bed volumes of treated water. GAC also effectively removed preformed DBPs at plants using prechlorination, including highly toxic iodoacetic acids and haloacetonitriles. However, 7 DBPs (mostly brominated and nitrogenous) increased in formation after GAC treatment. In one plant, an increase in tribromonitromethane had significant impacts on calculated cytotoxicity, which only had 7-17% reduction following GAC. While these DBPs are highly toxic, the total calculated cytotoxicity and genotoxicity for the GAC treated waters for the other two plants was reduced 32-83% (across young-middle-old GAC). Overall, calculated toxicity was reduced post-GAC, with preoxidation allowing further reductions.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Halogênios
11.
J Environ Sci (China) ; 78: 204-214, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665639

RESUMO

Chloramines, in practice, are formed onsite by adding ammonia to chlorinated drinking water to achieve the required disinfection. While regulated disinfection byproducts (DBPs) are reduced during chloramine disinfection, other DBPs such as iodinated (iodo-) DBPs, that elicit greater toxicity are formed. The objective of this study was to investigate the impact of prechlorination time on the formation of both halogen-specific total organic halogen (TOX) and iodo/chlorinated (chloro-) DBPs during prechlorination/chloramination in source waters (SWs) containing iopamidol, an X-ray contrast medium. Barberton SW (BSW) and Cleveland SW (CSW) containing iopamidol were prechlorinated for 5-60 min and afterwards chloraminated for 72 hr with ammonium chloride. Chlorine contact time (CCT) did not significantly impact total organic iodine (TOI) concentrations after prechlorination or chloramination. Concentrations of total organic chlorine (TOCl) formed during prechlorination did not significantly change regardless of pH and prechlorination time, while TOCl appeared to decrease after 72 hr chloramination period. Dichloroiodomethane (CHCl2I) formation during prechlorination did not exhibit any significant trends as a function of pH or CCT, but after chloramination, significant increases were observed at pHs 6.5 and 7.5 with respect to CCT. Iodo-HAAs were not formed during prechlorination but were detected after chloramination. Significant quantities of chloroform (CHCl3) and trichloroacetic acid (TCAA) were formed during prechlorination but formation ceased upon ammonia addition. Therefore, prechlorination studies should measure TOX and DBP concentrations prior to ammonia addition to obtain data regarding the initial conditions.


Assuntos
Cloro/química , Desinfetantes/química , Iopamidol/química , Poluentes Químicos da Água/química , Desinfecção/métodos , Modelos Químicos , Purificação da Água
12.
Environ Sci Technol ; 52(22): 13047-13056, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30339747

RESUMO

Iodinated contrast media (ICM) are nonmutagenic agents administered for X-ray imaging of soft tissues. ICM can reach µg/L levels in surface waters because they are administered in high doses, excreted largely unmetabolized, and poorly removed by wastewater treatment. Iodinated disinfection byproducts (I-DBPs) are highly genotoxic and have been reported in disinfected waters containing ICM. We assessed the mutagenicity in Salmonella of extracts of chlorinated source water containing one of four ICM (iopamidol, iopromide, iohexol, and diatrizoate). We quantified 21 regulated and nonregulated DBPs and 11 target I-DBPs and conducted a nontarget, comprehensive broad-screen identification of I-DBPs. We detected one new iodomethane (trichloroiodomethane), three new iodoacids (dichloroiodoacetic acid, chlorodiiodoacetic acid, bromochloroiodoacetic acid), and two new nitrogenous I-DBPs (iodoacetonitrile and chloroiodoacetonitrile). Their formation depended on the presence of iopamidol as the iodine source; identities were confirmed with authentic standards when available. This is the first identification in simulated drinking water of chloroiodoacetonitrile and iodoacetonitrile, the latter of which is highly cytotoxic and genotoxic in mammalian cells. Iopamidol (5 µM) altered the concentrations and relative distribution of several DBP classes, increasing total haloacetonitriles by >10-fold. Chlorination of ICM-containing source water increased I-DBP concentrations but not mutagenicity, indicating that such I-DBPs were either not mutagenic or at concentrations too low to affect mutagenicity.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Meios de Contraste , Desinfecção , Halogenação , Mutagênicos , Raios X
13.
J Environ Sci (China) ; 58: 271-284, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28774618

RESUMO

Lead contamination in the City of Flint, MI has been well documented over the past two years, with lead levels above the EPA Action Level until summer 2016. This resulted from an ill-fated decision to switch from Detroit water (Lake Huron) with corrosion control, to Flint River water without corrosion control. Although lead levels are now closer to normal, reports of skin rashes have sparked questions surrounding tap water in some Flint homes. This study investigated the presence of contaminants, including disinfection by-products (DBPs), in the hot tap water used for showering in the homes of residents in Flint. Extensive quantitative analysis of 61 regulated and priority unregulated DBPs was conducted in Flint hot and cold tap water, along with the analysis of 50 volatile organic compounds and a nontarget comprehensive, broadscreen analysis, to identify a possible source for the reported skin rashes. For comparison, chlorinated hot and cold waters from three other cities were also sampled, including Detroit, which also uses Lake Huron as its source water. Results showed that hot water samples generally contained elevated levels of regulated and priority unregulated DBPs compared to cold water samples, but trihalomethanes were still within regulatory limits. Overall, hot shower water from Flint was similar to waters sampled from the three other cities and did not have unusually high levels of DBPs or other organic chemicals that could be responsible for the skin rashes observed by residents. It is possible that an inorganic chemical or microbial contaminant may be responsible.


Assuntos
Desinfetantes/análise , Exposição Ambiental/estatística & dados numéricos , Higiene , Poluentes Químicos da Água/análise , Desinfecção/métodos , Água Potável/química , Humanos , Michigan , Medição de Risco , Trialometanos/análise , Purificação da Água/métodos , Abastecimento de Água
14.
Environ Sci Technol ; 50(13): 6652-62, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27124361

RESUMO

Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from seven sites, we report the first integrated mutagenicity and comprehensive analytical chemistry of spas treated with chlorine, bromine, or ozone, along with pools treated with these same disinfectants. Gas chromatography (GC) with high-resolution mass spectrometry, membrane-introduction mass spectrometry, and GC-electron capture detection were used to comprehensively identify and quantify DBPs and other contaminants. Mutagenicity was assessed by the Salmonella mutagenicity assay. More than 100 DBPs were identified, including a new class of DBPs, bromoimidazoles. Organic extracts of brominated pool/spa waters were 1.8× more mutagenic than chlorinated ones; spa waters were 1.7× more mutagenic than pools. Pool and spa samples were 2.4 and 4.1× more mutagenic, respectively, than corresponding tap waters. The concentration of the sum of 21 DBPs measured quantitatively increased from finished to tap to pool to spa; and mutagenic potency increased from finished/tap to pools to spas. Mutagenic potencies of samples from a chlorinated site correlated best with brominated haloacetic acid concentrations (Br-HAAs) (r = 0.98) and nitrogen-containing DBPs (N-DBPs) (r = 0.97) and the least with Br-trihalomethanes (r = 0.29) and Br-N-DBPs (r = 0.04). The mutagenic potencies of samples from a brominated site correlated best (r = 0.82) with the concentrations of the nine HAAs, Br-HAAs, and Br-DBPs. Human use increased significantly the DBP concentrations and mutagenic potencies for most pools and spas. These data provide evidence that human precursors can increase mutagenic potencies of pools and spas and that this increase is associated with increased DBP concentrations.


Assuntos
Desinfecção , Piscinas , Desinfetantes/química , Humanos , Mutagênicos , Água , Poluentes Químicos da Água
15.
Chemosphere ; 358: 142129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679180

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos
16.
J Chromatogr A ; 1705: 464204, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442069

RESUMO

The scientific foundation for per- and polyfluoroalkyl substances (PFAS) measurements in water, soils, sediments, biosolids, biota, and outdoor air has rapidly expanded; however, there are limited efforts devoted to developing analytical methods to measure vapor-phase PFAS in indoor air. A gas chromatography-tandem mass spectrometry (GC-MS/MS) method coupled with thermal desorption (TD) sorbent tube analysis was developed to quantify trace levels of fluorotelomer alcohols (FTOHs) emitted from consumer products in the indoor environment. Method evaluation included determination of instrument detection limits (IDLs), quality assurance checks of target standards purchased from different vendors, sample loss during storage, and TD sorbent breakthrough with tubes coupled in-series. The IDLs for TD-GC-MS/MS analyses ranged from 0.07 - 0.09 ng/tube. No significant loss of FTOHs was observed during stability tests over 28 days with relative standard deviations (RSDs) of spiked TD tubes ranging from 3.1 - 7.7% and the RSDs of polypropylene copolymer vial storage of standard solutions ranging from 4.3 - 8.4%. TD tube breakthrough was minimal with recovered FTOHs in the second tubes <1% of the spiked concentrations in the first tubes with carrier gas volume up to 20 L. The method has been applied to determine FTOH emissions from three consumer products in micro-scale chambers. A liquid stone cleaner/sealer product contained the highest levels of 6:2, 8:2, and 10:2 FTOHs, while the mattress pad products contained lower levels of 8:2 and 10:2 FTOHs. The emission parameters, including the initial emission factors and first order decay rate constants, were obtained based on the experimental data. The developed methods are sensitive and specific for analysis of all four target FTOHs (4:2, 6:2, 8:2, 10:2 FTOHs) with chamber testing. The methods can be extended to indoor air sampling and could be applicable to ambient air sampling.


Assuntos
Fluorocarbonos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fluorocarbonos/análise , Ar/análise
17.
Sci Total Environ ; 882: 163344, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030373

RESUMO

Oil and gas production generates large amounts of brine wastewater called "produced water" with various geogenic and synthetic contaminants. These brines are generally used in hydraulic fracturing operations to stimulate production. They are characterized by elevated halide levels, particularly geogenic bromide and iodide. Such salt concentrations in produced water may be as high as thousands of mg/L of bromide and tens of mg/L of iodide. Large volumes of produced water are stored, transported, reused in production operations, and ultimately disposed of by deep well injection into saline aquifers. Improper disposal may potentially contaminate shallow freshwater aquifers and impact drinking water sources. Because conventional produced water treatment typically does not remove halides, produced water contamination of groundwater aquifers may cause the formation of brominated and iodinated disinfection by-products (I-DBPs) at municipal water treatment plants. These compounds are of interest because of their higher toxicity relative to their chlorinated counterparts. This study reports a comprehensive analysis of 69 regulated and priority unregulated DBPs in simulated drinking waters fortified with 1 % (v/v) oil and gas wastewater. Impacted waters produced 1.3×-5× higher levels of total DBPs compared to river water after chlorination and chloramination. Individual DBP levels ranged from (<0.1-122 µg/L). Overall, chlorinated waters formed highest levels, including trihalomethanes that would exceed the U.S. EPA regulatory limit of 80 µg/L. Chloraminated waters had more I-DBP formation and highest levels of haloacetamides (23 µg/L) in impacted water. Calculated cytotoxicity and genotoxicity were higher for impacted waters treated with chlorine and chloramine than corresponding treated river waters. Chloraminated impacted waters had the highest calculated cytotoxicity, likely due to higher levels of more toxic I-DBPs and haloacetamides. These findings demonstrate that oil and gas wastewater if discharged to surface waters could adversely impact downstream drinking water supplies and potentially affect public health.


Assuntos
Desinfetantes , Água Potável , Fraturamento Hidráulico , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Água Potável/análise , Desinfetantes/análise , Águas Residuárias , Iodetos/análise , Brometos/análise , Poluentes Químicos da Água/análise , Halogenação
18.
J Air Waste Manag Assoc ; 73(7): 533-552, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36947591

RESUMO

During thermal processes utilized in affixing fluoropolymer coatings dispersion to fibers and fabrics, coating components are vaporized. It is suspected that per- and polyfluoroalkyl substances (PFAS) from the dispersions may undergo chemical transformations at the temperatures used, leading to additional emitted PFAS thermal byproducts. It is important to characterize these emissions to support evaluation of the resulting environmental and health impacts. In this study, a bench-scale system was built to simulate this industrial process via thermal application of dispersions to fiberglass utilizing relevant temperatures and residence times in sequential drying, baking, and sintering steps. Experiments were performed with two commercially available dispersions and a simple model mixture containing a single PFAS (6:2 fluorotelomer alcohol [6:2 FTOH]). Vapor-phase emissions were sampled and characterized by several off-line and real-time mass spectrometry techniques for targeted and nontargeted PFAS. Results indicate that multiple PFAS thermal transformation products and multiple nonhalogenated organic species were emitted from the exit of the high temperature third (sintering) furnace when 6:2 FTOH was the only PFAS present in the aqueous mixture. This finding supports the hypothesis that temperatures typical of these industrial furnaces may also induce chemical transformations within the fluorinated air emissions. Experiments using the two commercial fluoropolymer dispersions indicate air emissions of part-per-million by volume (ppmv) concentrations of heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether (Fluoroether E1), as well as other PFAS at operationally relevant temperatures. We suspect that E1 is a direct thermal decomposition product (via decarboxylation) of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (commonly referred to as HFPO-DA) present in the dispersions. Other thermal decomposition products, including the monomer, tetrafluoroethene, may originate from the PFAS used to stabilize the dispersion or from the polymer particles in suspension. This study represents the first researcher-built coating application simulator to report nontargeted PFAS emission characterization, real-time analyses, and the quantification of 30 volatile target PFAS.Implications: Thermal processes used to affix fluoropolymers to fabrics are believed to be a source of PFAS air emissions. These coating operations are used by many large and small manufacturers and typically do not currently require any air emissions control. This research designed and constructed a bench-scale system that simulates these processes and used several off-line and advanced real-time mass spectroscopy techniques to characterize PFAS air emissions from two commercial fluoropolymer dispersions. Further, as the compositions of commercial dispersions are largely unknown, a model three-component solution containing a single PFAS was used to characterize emissions of multiple PFAS thermal transformation products at operationally relevant conditions. This research shows that fluoropolymer fabric coating facilities can be sources of complex mixtures of PFAS air emissions that include volatile and semivolatile PFAS present in the dispersions, as well as PFAS byproducts formed by the thermal transformation of fluorocarbon and hydrocarbon species present in these dispersions.


Assuntos
Polímeros de Fluorcarboneto , Fluorocarbonos , Polímeros de Fluorcarboneto/análise , Fluorocarbonos/análise , Fluorocarbonos/química , Temperatura Alta , Temperatura
19.
Environ Mol Mutagen ; 62(3): 168-176, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484035

RESUMO

Drinking water disinfection by-products (DBPs), including the ubiquitous trihalomethanes (THMs), are formed during the treatment of water with disinfectants (e.g., chlorine, chloramines) to produce and distribute potable water. Brominated THMs (Br-THMs) are activated to mutagens via glutathione S-transferase theta 1 (GSTT1); however, iodinated THMs (I-THMs) have never been evaluated for activation by GSTT1. Among the I-THMs, only triiodomethane (iodoform) has been tested previously for mutagenicity in Salmonella and was positive (in the absence of GSTT1) in three strains (TA98, TA100, and BA13), all of which have error-prone DNA repair (pKM101). We evaluated five I-THMs (chlorodiiodomethane, dichloroiodomethane, dibromoiodomethane, bromochloroiodomethane, and triiodomethane) for mutagenicity in Salmonella strain RSJ100, which expresses GSTT1, and its homologue TPT100, which does not; neither strain has pKM101. We also evaluated chlorodiiodo-, dichloroiodo-, and dibromoiodo-methanes in strain TA100 +/- rat liver S9 mix; TA100 has pKM101. None was mutagenic in any of the strains. The I-THMs were generally more cytotoxic than their brominated and chlorinated analogues but less cytotoxic than analogous trihalonitromethanes tested previously. All five I-THMs showed similar thresholds for cytotoxicity at ~2.5 µmoles/plate, possibly due to release of iodine, a well-known antimicrobial. Although none of these I-THMs was activated by GSTT1, iodoform appears to be the only I-THM that is mutagenic in Salmonella, only in strains deficient in nucleotide excision repair (uvrB) and having pKM101. Given that only iodoform is mutagenic among the I-THMs and is generally present at low concentrations in drinking water, the I-THMs likely play little role in the mutagenicity of drinking water.


Assuntos
Água Potável/química , Mutagênese/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Trialometanos/toxicidade , Animais , Cloraminas/efeitos adversos , Cloraminas/farmacologia , Clorofluorcarbonetos de Metano/efeitos adversos , Clorofluorcarbonetos de Metano/farmacologia , Desinfetantes/efeitos adversos , Desinfetantes/farmacologia , Glutationa Transferase/química , Humanos , Hidrocarbonetos Iodados/efeitos adversos , Hidrocarbonetos Iodados/farmacologia , Mutagênicos/toxicidade , Ratos , Salmonella/genética , Trialometanos/farmacologia
20.
Environ Mol Mutagen ; 62(8): 458-470, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331495

RESUMO

Urinary mutagenicity reflects systemic exposure to complex mixtures of genotoxic/carcinogenic agents and is linked to tumor development. Coal combustion emissions (CCE) and diesel engine exhaust (DEE) are associated with cancers of the lung and other sites, but their influence on urinary mutagenicity is unclear. We investigated associations between exposure to CCE or DEE and urinary mutagenicity. In two separate cross-sectional studies of nonsmokers, organic extracts of urine were evaluated for mutagenicity levels using strain YG1041 in the Salmonella (Ames) mutagenicity assay. First, we compared levels among 10 female bituminous (smoky) coal users from Laibin, Xuanwei, China, and 10 female anthracite (smokeless) coal users. We estimated exposure-response relationships using indoor air concentrations of two carcinogens in CCE relevant to lung cancer, 5-methylchrysene (5MC), and benzo[a]pyrene (B[a]P). Second, we compared levels among 20 highly exposed male diesel factory workers and 15 unexposed male controls; we evaluated exposure-response relationships using elemental carbon (EC) as a DEE-surrogate. Age-adjusted linear regression was used to estimate associations. Laibin smoky coal users had significantly higher average urinary mutagenicity levels compared to smokeless coal users (28.4 ± 14.0 SD vs. 0.9 ± 2.8 SD rev/ml-eq, p = 2 × 10-5 ) and a significant exposure-response relationship with 5MC (p = 7 × 10-4 ). DEE-exposed workers had significantly higher urinary mutagenicity levels compared to unexposed controls (13.0 ± 10.1 SD vs. 5.6 ± 4.4 SD rev/ml-eq, p = .02) and a significant exposure-response relationship with EC (p-trend = 2 × 10-3 ). Exposure to CCE and DEE is associated with urinary mutagenicity, suggesting systemic exposure to mutagens, potentially contributing to cancer risk and development at various sites.


Assuntos
Poluentes Ocupacionais do Ar/urina , Carvão Mineral/efeitos adversos , Mutagênicos/análise , Doenças Profissionais/epidemiologia , Exposição Ocupacional/efeitos adversos , Fumar/urina , Emissões de Veículos/análise , Poluentes Ocupacionais do Ar/efeitos adversos , China/epidemiologia , Carvão Mineral/análise , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênicos/efeitos adversos , Doenças Profissionais/diagnóstico , Doenças Profissionais/genética , Doenças Profissionais/urina , Exposição Ocupacional/análise , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA