Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Rep ; 43(5): 114190, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717903

RESUMO

Neuronal morphology influences synaptic connectivity and neuronal signal processing. However, it remains unclear how neuronal shape affects steady-state distributions of organelles like mitochondria. In this work, we investigated the link between mitochondrial transport and dendrite branching patterns by combining mathematical modeling with in vivo measurements of dendrite architecture, mitochondrial motility, and mitochondrial localization patterns in Drosophila HS (horizontal system) neurons. In our model, different forms of morphological and transport scaling rules-which set the relative thicknesses of parent and daughter branches at each junction in the dendritic arbor and link mitochondrial motility to branch thickness-predict dramatically different global mitochondrial localization patterns. We show that HS dendrites obey the specific subset of scaling rules that, in our model, lead to realistic mitochondrial distributions. Moreover, we demonstrate that neuronal activity does not affect mitochondrial transport or localization, indicating that steady-state mitochondrial distributions are hard-wired by the architecture of the neuron.


Assuntos
Dendritos , Mitocôndrias , Animais , Dendritos/metabolismo , Mitocôndrias/metabolismo , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Neurônios/metabolismo
2.
JACC Cardiovasc Imaging ; 17(2): 128-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37410010

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) differentiates cardiac metastasis (CMET) and cardiac thrombus (CTHR) based on tissue characteristics stemming from vascularity on late gadolinium enhancement (LGE). Perfusion CMR can assess magnitude of vascularity; utility for cardiac masses (CMASS) is unknown. OBJECTIVES: This study sought to determine if perfusion CMR provides diagnostic and prognostic utility for CMASS beyond binary differentiation of CMET and CTHR. METHODS: The population comprised adult cancer patients with CMASS on CMR; CMET and CTHR were defined using LGE-CMR: CMASS+ patients were matched to CMASS- control subjects for cancer type/stage. First-pass perfusion CMR was interpreted visually and semiquantitatively for CMASS vascularity, including contrast enhancement ratio (CER) (plateau vs baseline) and contrast uptake rate (CUR) (slope). Follow-up was performed for all-cause mortality. RESULTS: A total of 462 cancer patients were studied, including patients with (CMET = 173, CTHR = 69) and without CMASS on LGE-CMR. On perfusion CMR, CER and CUR were higher within CMET vs CTHR (P < 0.001); CUR yielded better performance (AUC: 0.89-0.93) than CER (AUC: 0.66-0.72) (both P < 0.001) to differentiate LGE-CMR-evidenced CMET and CTHR, although both CUR (P = 0.10) and CER (P = 0.01) typically misclassified CMET with minimal enhancement. During follow-up, mortality among CMET patients was high but variable; 47% of patients were alive 1 year post-CMR. Patients with semiquantitative perfusion CMR-evidenced CMET had higher mortality than control subjects (HR: 1.42 [95% CI: 1.06-1.90]; P = 0.02), paralleling visual perfusion CMR (HR: 1.47 [95% CI: 1.12-1.94]; P = 0.006) and LGE-CMR (HR: 1.52 [95% CI: 1.16-2.00]; P = 0.003). Among patients with CMET on LGE-CMR, mortality was highest among patients (P = 0.002) with lesions in the bottom perfusion (CER) tertile, corresponding to low vascularity. Among CMET and cancer-matched control subjects, mortality was equivalent (P = NS) among patients with lesions in the upper CER tertile (corresponding to higher lesion vascularity). Conversely, patients with CMET in the middle (P = 0.03) and lowest (lowest vascularity) (P = 0.001) CER tertiles had increased mortality. CONCLUSIONS: Perfusion CMR yields prognostic utility that complements LGE-CMR: Among cancer patients with LGE-CMR defined CMET, mortality increases in proportion to magnitude of lesion hypoperfusion.


Assuntos
Meios de Contraste , Neoplasias Cardíacas , Humanos , Adulto , Prognóstico , Valor Preditivo dos Testes , Gadolínio , Neoplasias Cardíacas/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Perfusão , Medição de Risco , Imagem Cinética por Ressonância Magnética
3.
Circ Cardiovasc Imaging ; 17(8): e016852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163376

RESUMO

BACKGROUND: Right ventricular (RV) dysfunction is known to impact prognosis, but its determinants in coronary artery disease are poorly understood. Stress cardiac magnetic resonance (CMR) has been used to assess ischemia and infarction in relation to the left ventricle (LV); the impact of myocardial tissue properties on RV function is unknown. METHODS: Vasodilator stress CMR was performed in patients with known coronary artery disease at 7 sites between May 2005 and October 2018. Myocardial infarction was identified on late gadolinium enhancement-CMR, and infarct transmurality was graded on a per-segment basis. Ischemia was assessed on stress CMR based on first-pass perfusion and localized by using segment partitions corresponding to cine and late gadolinium enhancement analyses. RV function was evaluated by CMR-feature tracking for primary analysis with a global longitudinal strain threshold of 20% used to define impaired RV strain (RVIS); secondary functional analysis via RV ejection fraction was also performed. RESULTS: A total of 2604 patients were studied, among whom RVIS was present in 461 patients (18%). The presence and magnitude of RVIS were strongly associated with LV dysfunction, irrespective of whether measured by LV ejection fraction or wall motion score (P<0.001 for all). Regarding tissue substrate, regions of ischemic and dysfunctional myocardium (ie, hibernating myocardium) and infarct size were each independently associated with RVIS (both P<0.001). During follow-up (median, 4.62 [interquartile range, 2.15-7.67] years), 555 deaths (21%) occurred. Kaplan-Meier analysis for patients stratified by presence and magnitude of RV dysfunction by global longitudinal strain and RV ejection fraction each demonstrated strong prognostic utility for all-cause mortality (P<0.001). RVIS conferred increased mortality risk (hazard ratio, 1.35 [95% CI, 1.11-1.66]; P=0.003) even after controlling for LV function, infarction, and ischemia. CONCLUSIONS: RVIS in patients with known coronary artery disease is associated with potentially reversible LV processes, including LV functional impairment due to ischemic and predominantly viable myocardium, which confers increased mortality risk independent of LV function and tissue substrate.


Assuntos
Doença da Artéria Coronariana , Imagem Cinética por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Disfunção Ventricular Direita , Função Ventricular Direita , Humanos , Masculino , Feminino , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Imagem Cinética por Ressonância Magnética/métodos , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Direita/fisiologia , Imagem de Perfusão do Miocárdio/métodos , Valor Preditivo dos Testes , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Prognóstico , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA