Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Photosynth Res ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737529

RESUMO

Light harvesting by antenna systems is the initial step in a series of electron-transfer reactions in all photosynthetic organisms, leading to energy trapping by reaction center proteins. Cyanobacteria are an ecologically diverse group and are the simplest organisms capable of oxygenic photosynthesis. The primary light-harvesting antenna in cyanobacteria is the large membrane extrinsic pigment-protein complex called the phycobilisome. In addition, cyanobacteria have also evolved specialized membrane-intrinsic chlorophyll-binding antenna proteins that transfer excitation energy to the reaction centers of photosystems I and II (PSI and PSII) and dissipate excess energy through nonphotochemical quenching. Primary among these are the CP43 and CP47 proteins of PSII, but in addition, some cyanobacteria also use IsiA and the prochlorophyte chlorophyll a/b binding (Pcb) family of proteins. Together, these proteins comprise the CP43 family of proteins owing to their sequence similarity with CP43. In this article, we have revisited the evolution of these chlorophyll-binding antenna proteins by examining their protein sequences in parallel with their spectral properties. Our phylogenetic and spectroscopic analyses support the idea of a common ancestor for CP43, IsiA, and Pcb proteins, and suggest that PcbC might be a distant ancestor of IsiA. The similar spectral properties of CP47 and IsiA suggest a closer evolutionary relationship between these proteins compared to CP43.

2.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709817

RESUMO

Cyanobacteria are oxygenic photosynthetic prokaryotes with important roles in the global carbon and nitrogen cycles. Unicellular nitrogen-fixing cyanobacteria are known to be ubiquitous, contributing to the nitrogen budget in diverse ecosystems. In the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142, carbon assimilation and carbohydrate storage are crucial processes that occur as part of a robust diurnal cycle of photosynthesis and nitrogen fixation. During the light period, cells accumulate fixed carbon in glycogen granules to use as stored energy to power nitrogen fixation in the dark. These processes have not been thoroughly investigated, due to the lack of a genetic modification system in this organism. In bacterial glycogen metabolism, the glgX gene encodes a debranching enzyme that functions in storage polysaccharide catabolism. To probe the consequences of modifying the cycle of glycogen accumulation and subsequent mobilization, we engineered a strain of Cyanothece 51142 in which the glgX gene was genetically disrupted. We found that the ΔglgX strain exhibited a higher growth rate than the wild-type strain and displayed a higher rate of nitrogen fixation. Glycogen accumulated to higher levels at the end of the light period in the ΔglgX strain, compared to the wild-type strain. These data suggest that the larger glycogen pool maintained by the ΔglgX mutant is able to fuel greater growth and nitrogen fixation ability.IMPORTANCE Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been generally recalcitrant to genetic transformation. These cyanobacteria are becoming important model systems to study diurnally regulated processes. Strains of the Cyanothece genus have been characterized as displaying robust growth and high rates of nitrogen fixation. The significance of our study is in the establishment of a genetic modification system in a unicellular diazotrophic cyanobacterium, the demonstration of the interruption of the glgX gene in Cyanothece sp. strain ATCC 51142, and the characterization of the increased nitrogen-fixing ability of this strain.


Assuntos
Cyanothece/genética , Cyanothece/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicogênio/genética , Glicogênio/metabolismo , Fixação de Nitrogênio , Metabolismo dos Carboidratos/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Cyanothece/citologia , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fotossíntese
3.
Mol Cell Proteomics ; 15(6): 2021-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27056914

RESUMO

Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell.


Assuntos
Proteínas de Bactérias/análise , Proteômica/métodos , Synechocystis/metabolismo , Tilacoides/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida , Metabolismo Energético , Transporte Proteico , Espectrometria de Massas em Tandem
4.
Biochim Biophys Acta Bioenerg ; 1858(3): 249-258, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28077273

RESUMO

This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Metabolismo Energético , Ferro/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Bactérias/genética , Carotenoides/química , Carotenoides/metabolismo , Cianobactérias/química , Fluorescência , Deficiências de Ferro , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo
5.
J Biol Chem ; 291(36): 18689-99, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27382055

RESUMO

In photosynthetic organisms like cyanobacteria and plants, the main engines of oxygenic photosynthesis are the pigment-protein complexes photosystem I (PSI) and photosystem II (PSII) located in the thylakoid membrane. In the cyanobacterium Synechocystis sp. PCC 6803, the slr1796 gene encodes a single cysteine thioredoxin-like protein, orthologs of which are found in multiple cyanobacterial strains as well as chloroplasts of higher plants. Targeted inactivation of slr1796 in Synechocystis 6803 resulted in compromised photoautotrophic growth. The mutant displayed decreased chlorophyll a content. These changes correlated with a decrease in the PSI titer of the mutant cells, whereas the PSII content was unaffected. In the mutant, the transcript levels of genes for PSI structural and accessory proteins remained unaffected, whereas the levels of PSI structural proteins were severely diminished, indicating that Slr1796 acts at a posttranscriptional level. Biochemical analysis indicated that Slr1796 is an integral thylakoid membrane protein. We conclude that Slr1796 is a novel regulatory factor that modulates PSI titer.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/enzimologia , Tiorredoxinas/metabolismo , Tilacoides/enzimologia , Proteínas de Bactérias/genética , Clorofila/genética , Clorofila/metabolismo , Clorofila A , Complexo de Proteína do Fotossistema I/genética , Synechocystis/genética , Tiorredoxinas/genética , Tilacoides/genética
6.
Photosynth Res ; 134(2): 165-174, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28733863

RESUMO

Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response to nitrogen fluctuations, with coordinated populations of cells undergoing pigment modifications. Chlorophyll fluorescence originating from photosystem I and II decreased during nitrogen starvation, but no alteration in subcellular chlorophyll localization was found. We observed differential rod and core pigment responses to nitrogen deprivation, suggesting that PBS complexes undergo a stepwise degradation process.


Assuntos
Nitrogênio/metabolismo , Fotossíntese/fisiologia , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
7.
J Proteome Res ; 13(7): 3262-76, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24846609

RESUMO

Members of the cyanobacterial genus Cyanothece exhibit considerable variation in physiological and biochemical characteristics. The comparative assessment of the genomes and the proteomes has the potential to provide insights on differences among Cyanothece strains. By applying Sequedex, an annotation-independent method for ascribing gene functions, we confirmed significant species-specific differences of functional genes in different Cyanothece strains, particularly in Cyanothece PCC7425. Using a shotgun proteomics approach based on prefractionation and tandem mass spectrometry, we detected ∼28-48% of the theoretical Cyanothece proteome, depending on the strain. The expression of a total of 642 orthologous proteins was observed in all five Cyanothece strains. These shared orthologous proteins showed considerable correlations in their abundances across different Cyanothece strains. Functional classification indicated that the majority of proteins involved in central metabolic functions such as amino acid, carbohydrate, protein, and RNA metabolism, photosynthesis, respiration, and stress responses were observed to a greater extent in the core proteome, whereas proteins involved in membrane transport, iron acquisition, regulatory functions, flagellar motility, and chemotaxis were observed to a greater extent in the unique proteome. Considerable differences were evident across different Cyanothece strains. Notably, the analysis of Cyanothece PCC7425, which showed the highest number of unique proteins (682), provided direct evidence of evolutionary differences in this strain. We conclude that Cyanothece PCC7425 diverged significantly from the other Cyanothece strains or evolved from a different lineage.


Assuntos
Proteínas de Bactérias/metabolismo , Cyanothece/metabolismo , Proteoma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cromatografia por Troca Iônica , Cyanothece/genética , Expressão Gênica , Fixação de Nitrogênio , Fotossíntese , Filogenia , Proteoma/genética , Proteoma/isolamento & purificação , Espectrometria de Massas em Tandem
8.
J Biol Chem ; 288(5): 3632-40, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23255600

RESUMO

Cyanobacteria are prokaryotes that can use photosynthesis to convert sunlight into cellular fuel. Knowledge of the organization of the membrane systems in cyanobacteria is critical to understanding the metabolic processes in these organisms. We examined the wild-type strain of Synechocystis sp. PCC 6803 and a series of mutants with altered light-harvesting phycobilisome antenna systems for changes in thylakoid membrane architecture under different conditions. Using small-angle neutron scattering, it was possible to resolve correlation distances of subcellular structures in live cells on the nanometer scale and capture dynamic light-induced changes to these distances. Measurements made from samples with varied scattering contrasts confirmed that these distances could be attributed to the thylakoid lamellar system. We found that the changes to the thylakoid system were reversible between light- and dark-adapted states, demonstrating a robust structural flexibility in the architecture of cyanobacterial cells. Chemical disruption of photosynthetic electron transfer diminished these changes, confirming the involvement of the photosynthetic apparatus. We have correlated these findings with electron microscopy data to understand the origin of the changes in the membranes and found that light induces an expansion in the center-to-center distances between the thylakoid membrane layers. These combined data lend a dynamic dimension to the intracellular organization in cyanobacterial cells.


Assuntos
Difração de Nêutrons , Espalhamento a Baixo Ângulo , Tilacoides/química , Escuridão , Difusão , Transporte de Elétrons , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Ficobilissomas/metabolismo , Ficobilissomas/ultraestrutura , Maleabilidade , Synechocystis/citologia , Synechocystis/metabolismo , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura , Fatores de Tempo
9.
Plant Physiol ; 161(3): 1334-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274238

RESUMO

In order to accommodate the physiologically incompatible processes of photosynthesis and nitrogen fixation within the same cell, unicellular nitrogen-fixing cyanobacteria have to maintain a dynamic metabolic profile in the light as well as the dark phase of a diel cycle. The transition from the photosynthetic to the nitrogen-fixing phase is marked by the onset of various biochemical and regulatory responses, which prime the intracellular environment for nitrogenase activity. Cellular respiration plays an important role during this transition, quenching the oxygen generated by photosynthesis and by providing energy necessary for the process. Although the underlying principles of nitrogen fixation predict unicellular nitrogen-fixing cyanobacteria to function in a certain way, significant variations are observed in the diazotrophic behavior of these microbes. In an effort to elucidate the underlying differences and similarities that govern the nitrogen-fixing ability of unicellular diazotrophic cyanobacteria, we analyzed six members of the genus Cyanothece. Cyanothece sp. ATCC 51142, a member of this genus, has been shown to perform efficient aerobic nitrogen fixation and hydrogen production. Our study revealed significant differences in the patterns of respiration and nitrogen fixation among the Cyanothece spp. strains that were grown under identical culture conditions, suggesting that these processes are not solely controlled by cues from the diurnal cycle but that strain-specific intracellular metabolic signals play a major role. Despite these inherent differences, the ability to perform high rates of aerobic nitrogen fixation and hydrogen production appears to be a characteristic of this genus.


Assuntos
Ritmo Circadiano , Cyanothece/citologia , Cyanothece/fisiologia , Fixação de Nitrogênio/fisiologia , Aerobiose/efeitos dos fármacos , Aerobiose/genética , Carbono/farmacologia , Cromossomos Bacterianos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Cyanothece/genética , Cyanothece/ultraestrutura , Genes Bacterianos/genética , Hidrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismo , Fenótipo , Fatores de Tempo
10.
Plant Physiol ; 158(4): 1600-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331410

RESUMO

Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.


Assuntos
Mutação/genética , Fotossíntese , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura , Análise Multivariada , Fenilalanina Amônia-Liase/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficocianina/metabolismo , Análise Espectral , Synechocystis/enzimologia
11.
Photosynth Res ; 118(1-2): 17-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24132812

RESUMO

Photosynthetic organisms rely on antenna systems to harvest and deliver energy from light to reaction centers. In fluctuating photic environments, regulation of light harvesting is critical for a photosynthetic organism's survival. Here, we describe the use of a suite of phycobilisome mutants to probe the consequences of antenna truncation in the cyanobacterium Synechocystis sp. PCC 6803. Studies using transmission electron microscopy (TEM), hyperspectral confocal fluorescence microscopy (HCFM), small-angle neutron scattering (SANS), and an optimized photobioreactor system have unraveled the adaptive strategies that cells employ to compensate for antenna reduction. As the phycobilisome antenna size decreased, changes in thylakoid morphology were more severe and physical segregation of the two photosystems increased. Repeating distances between thylakoid membranes measured by SANS were correlated with TEM data, and corresponded to the degree of phycobilisome truncation. Thylakoid membranes were found to have a high degree of structural flexibility, and changes in the membrane system upon illumination were rapid and reversible. Phycobilisome truncation in Synechocystis 6803 reduced the growth rate and lowered biomass accumulation. Together, these results lend a dynamic perspective to the intracellular membrane organization in cyanobacteria cells and suggest an adaptive mechanism that allows cells to adjust to altered light absorption capabilities, while highlighting the cell-wide implications of antenna truncation.


Assuntos
Ficobilissomas/fisiologia , Synechocystis/fisiologia , Tilacoides/fisiologia , Fotossíntese , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
12.
Appl Environ Microbiol ; 78(17): 6349-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706065

RESUMO

Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains of Synechocystis sp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO(2) conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.


Assuntos
Processos Autotróficos , Processos Fototróficos , Ficobilissomas/genética , Ficobilissomas/metabolismo , Deleção de Sequência , Synechocystis/metabolismo , Dióxido de Carbono/metabolismo , Luz , Synechocystis/genética
13.
Plant Physiol ; 155(4): 1656-66, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21173021

RESUMO

Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.


Assuntos
Cianobactérias/citologia , Tomografia com Microscopia Eletrônica , Tilacoides/ultraestrutura , Membranas Intracelulares/ultraestrutura
14.
Sci Rep ; 12(1): 18939, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344535

RESUMO

Cyanobacteria are the only oxygenic photosynthetic organisms that can fix nitrogen. In diazotrophic cyanobacteria, the regulation of photosynthesis during the diurnal cycle is hypothesized to be linked with nitrogen fixation and involve the D1 protein isoform PsbA4. The amount of bioavailable nitrogen has a major impact on productivity in aqueous environments. In contrast to low- or nitrogen-fixing (-N) conditions, little data on photosynthetic regulation under nitrogen-replete (+ N) conditions are available. We compared the regulation of photosynthesis under -N and + N conditions during the diurnal cycle in wild type and a psbA4 deletion strain of the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. We observed common changes to light harvesting and photosynthetic electron transport during the dark in + N and -N conditions and found that these modifications occur in both diazotrophic and non-diazotrophic cyanobacteria. Nitrogen availability increased PSII titer when cells transitioned from dark to light and promoted growth. Under -N conditions, deletion of PsbA4 modified charge recombination in dark and regulation of PSII titer during dark to light transition. We conclude that darkness impacts the acceptor-side modifications to PSII and photosynthetic electron transport in cyanobacteria independently of the nitrogen-fixing status and the presence of PsbA4.


Assuntos
Cianobactérias , Cyanothece , Nitrogênio/metabolismo , Cyanothece/genética , Fotossíntese , Cianobactérias/metabolismo , Fixação de Nitrogênio
15.
Proc Natl Acad Sci U S A ; 105(16): 6156-61, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18427117

RESUMO

Cyanobacteria are photosynthetic organisms and are the only prokaryotes known to have a circadian lifestyle. Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 produce oxygen and can also fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. To accommodate such antagonistic processes, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day-night cycle. This is accomplished by temporal separation of the two processes: photosynthesis during the day and nitrogen fixation at night. Although previous studies have examined periodic changes in transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5,000 genes in Cyanothece 51142 during two consecutive diurnal periods. Our analysis showed that approximately 30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece 51142. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes encoding enzymes in numerous individual biochemical pathways, such as glycolysis, oxidative pentose phosphate pathway, and glycogen metabolism, were coregulated and maximally expressed at distinct phases during the diurnal cycle. These studies provide a comprehensive picture of how a physiologically relevant diurnal light-dark cycle influences the metabolism in a photosynthetic bacterium.


Assuntos
Ritmo Circadiano/genética , Cyanothece/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Fixação de Nitrogênio/genética , Fotossíntese/genética , Sequência de Bases , Cromossomos Bacterianos/genética , Cyanothece/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Redes Reguladoras de Genes , Dados de Sequência Molecular
16.
Proc Natl Acad Sci U S A ; 105(39): 15094-9, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18812508

RESUMO

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.


Assuntos
Cyanothece/genética , Genoma Bacteriano , Fixação de Nitrogênio/genética , Sequência de Bases , Cromossomos Bacterianos , Cyanothece/citologia , Cyanothece/metabolismo , Metabolismo Energético/genética , Fermentação/genética , Ordem dos Genes , Dados de Sequência Molecular , Proteômica , Ácido Pirúvico/metabolismo , Análise de Sequência de DNA
17.
Curr Opin Biotechnol ; 67: 1-6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129046

RESUMO

As photoautotrophic organisms, cyanobacteria capture and store solar energy in the form of biomass. Cyanobacterial biomass has been an important component of diet and nutrition in several regions for centuries. Synthetic biology strategies are currently being applied to increase the yield and productivity of cyanobacterial biomass by optimizing solar energy utilization and CO2 fixation rates for carbon storage. Likewise, engineering cyanobacteria as cellular factories to synthesize carbohydrates, amino acids, proteins, lipids and fatty acids is providing an attractive way to sustainably produce food and nutrients for human consumption. In this review, we have summarized recent progress in both aspects and prospective trends under development.


Assuntos
Cianobactérias , Fotossíntese , Humanos , Nutrientes , Estudos Prospectivos , Biologia Sintética
18.
Sci Rep ; 9(1): 5711, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952892

RESUMO

The photosynthetic machinery of the cyanobacterium Synechocystis sp. PCC 6803 resides in flattened membrane sheets called thylakoids, situated in the peripheral part of the cellular cytoplasm. Under photosynthetic conditions these thylakoid membranes undergo various dynamical processes that could be coupled to their energetic functions. Using Neutron Spin Echo Spectroscopy (NSE), we have investigated the undulation dynamics of Synechocystis sp. PCC 6803 thylakoids under normal photosynthetic conditions and under chemical treatment with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), an herbicide that disrupts photosynthetic electron transfer. Our measurements show that DCMU treatment has a similar effect as dark conditions, with differences in the undulation modes of the untreated cells compared to the chemically inhibited cells. We found that the disrupted membranes are 1.5-fold more rigid than the native membranes during the dark cycle, while in light they relax approximately 1.7-fold faster than native and they are 1.87-fold more flexible. The strength of the herbicide disruption effect is characterized further by the damping frequency of the relaxation mode and the decay rate of the local shape fluctuations. In the dark, local thicknesses and shape fluctuations relax twice as fast in native membranes, at 17% smaller mode amplitude, while in light the decay rate of local fluctuations is 1.2-fold faster in inhibited membranes than in native membranes, at 56% higher amplitude. The disrupted electron transfer chain and the decreased proton motive force within the lumenal space partially explain the variations observed in the mechanical properties of the Synechocystis membranes, and further support the hypothesis that the photosynthetic process is tied to thylakoid rigidity in this type of cyanobacterial cell.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Membranas Intracelulares/química , Fotossíntese/efeitos dos fármacos , Synechocystis/efeitos dos fármacos , Tilacoides/efeitos dos fármacos , Diurona/farmacologia , Diurona/toxicidade , Synechocystis/metabolismo , Tilacoides/metabolismo
19.
Biomolecules ; 9(8)2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426316

RESUMO

Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In Synechococcus elongatus UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO2 conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Proteômica , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
20.
mBio ; 9(3)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871920

RESUMO

Biological nitrogen fixation is catalyzed by nitrogenase, a complex metalloenzyme found only in prokaryotes. N2 fixation is energetically highly expensive, and an energy-generating process such as photosynthesis can meet the energy demand of N2 fixation. However, synthesis and expression of nitrogenase are exquisitely sensitive to the presence of oxygen. Thus, engineering nitrogen fixation activity in photosynthetic organisms that produce oxygen is challenging. Cyanobacteria are oxygenic photosynthetic prokaryotes, and some of them also fix N2 Here, we demonstrate a feasible way to engineer nitrogenase activity in the nondiazotrophic cyanobacterium Synechocystis sp. PCC 6803 through the transfer of 35 nitrogen fixation (nif) genes from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. In addition, we have identified the minimal nif cluster required for such activity in Synechocystis 6803. Moreover, nitrogenase activity was significantly improved by increasing the expression levels of nif genes. Importantly, the O2 tolerance of nitrogenase was enhanced by introduction of uptake hydrogenase genes, showing this to be a functional way to improve nitrogenase enzyme activity under micro-oxic conditions. To date, our efforts have resulted in engineered Synechocystis 6803 strains that, remarkably, have more than 30% of the N2 fixation activity of Cyanothece 51142, the highest such activity established in any nondiazotrophic oxygenic photosynthetic organism. This report establishes a baseline for the ultimate goal of engineering nitrogen fixation ability in crop plants.IMPORTANCE Application of chemically synthesized nitrogen fertilizers has revolutionized agriculture. However, the energetic costs of such production processes and the widespread application of fertilizers have raised serious environmental issues. A sustainable alternative is to endow to crop plants the ability to fix atmospheric N2in situ One long-term approach is to transfer all nif genes from a prokaryote to plant cells and to express nitrogenase in an energy-producing organelle, chloroplast, or mitochondrion. In this context, Synechocystis 6803, the nondiazotrophic cyanobacterium utilized in this study, provides a model chassis for rapid investigation of the necessary requirements to establish diazotrophy in an oxygenic phototroph.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cyanothece/enzimologia , Fixação de Nitrogênio , Nitrogenase/genética , Nitrogenase/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Cyanothece/genética , Nitrogênio/metabolismo , Nitrogenase/química , Oxigênio/metabolismo , Fotossíntese , Engenharia de Proteínas , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA