Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Exp Appl Acarol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869730

RESUMO

Florida's strawberry industry is currently valued at $511 million annually but faces challenges from pathogens and arthropod pests especially Tetranychus urticae Koch (twospotted spider mite) and Scirtothrips dorsalis Hood (chilli thrips). Predatory mites, particularly Neoseiulus cucumeris Oudemans, Neoseiulus californicus McGregor, and Amblyseius swirskii Athias-Henriot, play a crucial role in pest management. However, there are concerns regarding how these biological control agents are affected by fungicides used in current pathogen management strategies. This study assessed the residual effects of commonly used fungicides in strawberries on the survival, feeding, and oviposition of these predatory mites. Commercially sourced predatory mites were reared on S. dorsalis larvae, and gravid female predators placed on fungicide treated strawberry leaf discs in a Munger cell for 120 h. Fungicides tested included two formulations of Captan, hydrogen peroxide + peroxyacetic acid, cyprodinil + fludioxonil, tetramethylthiuram disulfide, cyflufenamid and a control. All fungicides tested had an impact on the survival, feeding, and oviposition of the predators. Among the fungicide treatments, the lowest predator survival was observed in the cyprodinil + fludioxonil treatment, while the highest was observed in the hydrogen peroxide + peroxyacetic acid and tetramethylthiuram disulfide treatments. In all treatments, feeding and oviposition greatly varied among predators; specifically, N. cucumeris and A. swirskii had the lowest prey consumption, while N. californicus had the highest. These findings highlight the potential incompatibility between fungicides and predatory mites and demonstrate the need for the development of a fungicide rotation program tailored to the different susceptibilities of predators to fungicides.

2.
Exp Appl Acarol ; 70(2): 189-204, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27502111

RESUMO

Greenhouse and field experiments were conducted to evaluate the effectiveness of site-specific tactics for management of the twospotted spider mite, Tetranychus urticae Koch, a major pest of greenhouse and field-grown strawberries (Fragaria x ananassa Duchesne). Two site-specific (spot) treatments, the miticide bifenazate (Acramite(®)) and the predatory mite Neoseiulus californicus McGregor, were compared with whole-plot treatments of bifenazate or N. californicus to determine whether T. urticae could be effectively managed in field-grown strawberry using only site-specific tactics. Additionally, the cost of site-specific tactics was compared with whole-plot treatments to determine the economic value of using site-specific management tactics for T. urticae in strawberries. In the greenhouse, all treatments equivalently reduced the number of T. urticae below control. In the field during the 2011-2012 season, more T. urticae eggs and motiles were in the whole-plot treatments of both N. californicus and bifenazate in the mid-season and late season, respectively, compared with the spot treatments. With the exception of site-specific N. californicus during the 2011-2012 field season, there were no differences in marketable yields between plots with site-specific treatments and whole-plot management. An economic analysis demonstrated a significant cost savings (75.3 %) with site-specific treatments of N. californicus compared with whole-plot application of N. californicus. Similarly, a 24.7 % reduction in cost was achieved in using site-specific bifenazate compared with whole-plot application of bifenazate. The findings indicate that site-specific treatments with N. californicus and bifenazate are competitive alternatives to whole-field application for T. urticae management in strawberries.


Assuntos
Acaricidas , Carbamatos , Hidrazinas , Ácaros , Controle Biológico de Vetores , Controle de Ácaros e Carrapatos , Animais , Fragaria , Estações do Ano , Tetranychidae
3.
J Econ Entomol ; 107(4): 1508-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195443

RESUMO

Field experiments were conducted in commercial southern highbush blueberries and wild blackberries to evaluate the attractiveness of different trap designs, bait types, and bait age on captures of the spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). During the 2012 trap design study, the five treatments evaluated were four 1-liter clear plastic cup traps (with and without a yellow visual stimulus or odorless dish detergent) and the fifth treatment was a Pherocon AM yellow sticky card trap. Cup traps were baited with 150 ml of apple cider vinegar (ACV) and the Pherocon AM trap had a 7.4-ml glass vial containing ACV. In 2013, the Pherocon AM yellow sticky card was omitted because of low spotted wing drosophila captures in 2012. The four treatments evaluated were four 1-liter cup traps with and without a yellow visual stimulus. One cup trap (with a yellow stimulus) was baited with yeast + sugar in place of ACV and the other cup traps were baited with ACV. In both years, there were no differences in spotted wing drosophila captures among cup traps baited with ACV with and without yellow visual stimulus. However, the cup trap baited with yeast + sugar and yellow visual stimulus captured more spotted wing drosophila than the ACV-baited cup traps irrespective of visual stimulus or detergent. In another study, four baits including 1) ACV, 2) yeast + sugar mixture, 3) yeast + flour mixture (yeast, sugar, water, whole wheat flour, and ACV), and 4) wine + vinegar mixture (rice vinegar and merlot wine) were evaluated in a commercial blueberry planting using 1-liter clear plastic cup traps (as described above). The experiment was repeated in wild blackberries but the yeast + flour bait was replaced with ACV + merlot wine + sugar. Results indicated that the two yeast baits captured significantly more spotted wing drosophila and more nontarget organisms than the vinegar baits. In the final study, although we found that the attraction of ACV and yeast + sugar to spotted wing drosophila did not change with bait age, the attraction to other Drosophilidae flies decreased with age. The ease of implementing a trap-and-lure system for spotted wing drosophila is discussed.


Assuntos
Drosophila , Controle de Insetos/instrumentação , Ácido Acético , Animais , Mirtilos Azuis (Planta) , Carboidratos , Rosaceae , Leveduras
4.
J Econ Entomol ; 107(1): 310-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665715

RESUMO

Blueberry gall midge, Dasineura oxycoccana (Johnson), is a pest of cultivated blueberries throughout the world. Larvae feed and develop in developing leaf buds, and also in flower buds of rabbiteye blueberries, which causes buds to fall off the plant. These injuries can cause up to 80% yield loss in heavy infestations. As the larvae are protected from insecticides, adults must be targeted with foliar applications. Consequently, the detection of adults through an effective monitoring program is critical to time insecticide sprays against the blueberry gall midge. Understanding the distribution of the midge and its parasitoids is also important information for developing a more effective pest management program. A comparison of three monitoring trap types demonstrated that bucket emergence traps and clear panel traps captured similar numbers of midges, although the bucket trap is more sensitive at low population levels. Using bucket emergence traps, we found that nearly 80% of the midges collected pupated within 48 cm of the blueberry bush, suggesting that a targeted soil treatment may be a viable integrated pest management tactic that could be included in a midge management program. Traps and bud samples demonstrated that adult and larval midges and parasitoids were randomly distributed throughout the field in both years, with the exception of larval aggregation in early 2012. As parasitoid distribution is parallel to host occurrence within blueberry plantings, this increases the potential for biological control activities against the blueberry gall midge in fields that do not receive broad-spectrum insecticide applications.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Controle de Insetos/instrumentação , Animais , Dípteros/parasitologia , Feminino , Florida , Larva , Masculino , Dinâmica Populacional , Pupa , Vespas
5.
J Econ Entomol ; 117(3): 834-842, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38687636

RESUMO

Southern red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae), is an important polyphagous spider mite pest that causes economic damage to many ornamentals, coffee, and fruit crops. Blueberry growers in the Southeastern United States, including Florida and Georgia, have experienced severe losses due to outbreaks of O. ilicis. Predatory mites are an important management tool used for controlling spider mites; however, predators have not been studied and successfully evaluated in blueberry systems. Amblyseius swirskii Athias-Henriot, Phytoseiulus persimilis Athias-Henriot, and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) are among the most economically important arthropod agents used in augmentative biological control worldwide. To evaluate the potential of these 3 commercially available predatory mites for use in blueberry plantings, we conducted experiments under controlled laboratory conditions and in the greenhouse. In preliminary laboratory experiments, P. persimilis and N. californicus significantly reduced the number of O. ilicis motile stages below those found in the untreated control, indicating the potential for these 2 predatory mite species to suppress O. ilicis populations. Amblyseius swirskii did not perform well controlling O. ilicis motiles in the laboratory. Under greenhouse conditions, N. californicus and P. persimilis significantly reduced the number of eggs after 7 days of release and the number of motile stages after 14 days of release. This is the first report of using phytoseiid mites to suppress O. ilicis in blueberry systems in the United States. Further studies on predator behavior, feeding preferences, and acaricide compatibility with predators are required to investigate the possibility of using P. persimilis, and N. californicus as biological control agents of O. ilicis in blueberry systems.


Assuntos
Mirtilos Azuis (Planta) , Controle Biológico de Vetores , Comportamento Predatório , Tetranychidae , Animais , Tetranychidae/fisiologia , Feminino
6.
J Econ Entomol ; 117(2): 585-594, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227632

RESUMO

Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an invasive, early-season pest of strawberry in Florida, causing feeding injury to young foliage that results in stunted plant growth and yield loss. Spinetoram, an effective insecticide for thrips pests with up to 3 applications per season permitted in strawberry, is often applied repeatedly during the early-season (Oct-Nov) to manage S. dorsalis, leaving few or no applications for flower thrips pests later in the season (Dec-Mar). Therefore, new strategies are needed to manage S. dorsalis with less insecticide, with the hypothesis that the first insecticide application can be delayed because young strawberry plants can compensate for minor feeding injury without compromising strawberry yield. Experiments conducted in strawberry field plots in Balm, FL, during 2018 and 2019 showed that delaying a spinetoram application for 14 days after infesting a plant with zero, 5, 10, or 20 S. dorsalis adults did not reduce the plant vigor and yield compared to spinetoram application after 4 days. Furthermore, young plants recovered from injury (10-30% bronzing injury on leaf veins and petioles) due to 1 or 2 S. dorsalis adults or larvae per trifoliate. A strategy of delaying the first spinetoram application when plants have 4-5 trifoliates should help reduce the number of insecticide applications needed for S. dorsalis management and reserve spinetoram applications for later in the season. Lower input costs in Florida strawberry without compromising yields due to thrips damage will improve the economics and sustainability of production systems.


Assuntos
Fragaria , Inseticidas , Macrolídeos , Tisanópteros , Animais , Florida
7.
J Econ Entomol ; 106(4): 1757-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24020290

RESUMO

Understanding the impact of a pest species on a particular crop is critical for the success of a pest management program. Field studies were conducted to determine the effect of the twospotted spider mite, Tetranychus urticae Koch, on marketable yield of strawberries during the 2008/2009 and 2009/2010 growing seasons. Low, medium, and high mite infestation levels were established by initial inoculations of5, 10, and 20 twospotted spider mites per strawberry leaf, respectively. A control treatment maintained at near zero mites through applications of an acaricide, bifenazate (Acramite 50 WP), was also included. Weekly records of motile twospotted spider mites were obtained over 13 and 16 wk during the 2008/2009 and 2009/2010 growing seasons, respectively. Degree-days and weather parameters were monitored to determine their effect on mite population. In addition, mite-days were calculated for each year from weekly mite counts to determine the effect of mites on marketable yield of strawberries. In both years, twospotted spider mite population increased throughout the growing seasons. More degree-days were accumulated during the 2008/2009 growing season, and mite population was higher in 2008/2009 than in 2009/2010. Mite population density per leaf increased up to 278 motiles per leaf in 2008/2009 growing season as compared with 137 in 2009/2010 within the high-infestation-level treatment. The divergence in mite population between the two growing seasons was attributed mainly to temperature differences between the two seasons that affected mite population development and establishment. During both growing seasons, the high mite infestation level had lowest marketable yield. A negative correlation between cumulative mite-days and harvested marketable yields was detected in both seasons, but it was only significant during the 2008/2009 growing season. Strawberry yield reduction was detected when plants attained 80 mites per leaf in 2008/2009 and 50 mites per leaf in 2009/2010 within the high mite infestation treatment. Factors that affect mite population establishment and management for twospotted spider mites on strawberries are discussed.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Fragaria/crescimento & desenvolvimento , Tetranychidae/fisiologia , Acaricidas/farmacologia , Animais , Carbamatos/farmacologia , Produtos Agrícolas/economia , Meio Ambiente , Florida , Cadeia Alimentar , Hidrazinas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Densidade Demográfica , Estações do Ano , Tetranychidae/efeitos dos fármacos , Controle de Ácaros e Carrapatos
8.
J Econ Entomol ; 106(1): 73-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448017

RESUMO

In the southeastern United States, bud-infesting larvae of two gall midge species, Dasineura oxycoccana (Johnson) and Prodiplosis vaccinii (Felt), destroy from 20 to 80% of the rabbiteye blueberry crop, Vaccinium virgatum Aiton (syn. V. ashei Reade). These midge larvae are attacked by five species of parasitoid wasps. The most effective of these is the bivoltine eulophid Aprostocetus sp. nr. marylandensis (Eulophidae), whose adults constitute one-third of the gall midge parasitoids, active in both conventional and organic blueberry fields. Broods of Aprostocetus use several reproductive strategies to keep sole possession of their larval hosts. As solitary endoparasitoids as well as facultative hyperparasitoids, precocial larvae of Aprostocetus devour hosts organs along with any younger siblings and rival parasitoid broods. Although larger hosts are preferred, any sized larvae can be parasitized, which reduces brood congestion and infanticide. An Aprostocetus female spends an hour or more in a systematic hunt for hosts, during which time 40 to 100% of midge larvae encountered are parasitized. Aprostocetus females could have located hosts more quickly had they recognized host-feeding scars as cues. Even so, high rates of larval parasitism achieved by Aprostocetus may kill as many midges as insecticides do.


Assuntos
Mirtilos Azuis (Planta)/parasitologia , Dípteros/parasitologia , Interações Hospedeiro-Patógeno , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Feminino , Oviposição
9.
Insects ; 14(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504580

RESUMO

Tetranychid outbreaks have been detected since 2016 in southern highbush blueberries (SHB); however, it was not until 2019 that the southern red mite (SRM), Oligonychus ilicis (Acari: Tetranychidae) was confirmed as the pest causing severe bronzing and stunting, in multiple Florida and Georgia commercial blueberry plantings. To date, only three miticides (fenazaquin, fenpyroximate, and acequinocyl) have been registered for use in SHB and there are no clear guidelines on how to manage SRM in SHB. Similarly, there is no knowledge regarding the existence of natural enemies of SRM in SHB. This is the first report of naturally occurring predatory mites (Amblyseius sp. and Neoseiulus ilicis) associated with SRM in SHB. Predatory mites were recorded in blueberry bushes after treatment with seven miticides used to suppress SRM populations including spiromesifen, acequinocyl, sulfur, sulfur + molasses, bifenazate, fenpyroximate, and fenazaquin. The number of SRM recorded per leaf and averaged plant damage ratings (0 = no bronzing-4 = 100% bronzing) were used to evaluate miticide efficacy. Additionally, the presence or absence of predatory mites per sample was recorded. Fenpyroximate used as the standard miticide, significantly reduced mite numbers seven days after application, as well as acequinocyl and fenazaquin. Fenpyroximate and fenazaquin demonstrated the best performance for managing O. ilicis on SHB and treated bushes demonstrated significantly less bronzing compared with the control plants. These miticides were also safe to naturally occurring predatory mites. Lastly, the level of growers' awareness regarding SRM was assessed using surveys in 2020 to design adequate educational materials available to the grower community.

10.
J Econ Entomol ; 116(1): 202-208, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36617300

RESUMO

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is a key pest of many berry and fruit crops worldwide. The primary method of controlling this pest is the application of insecticides. Attract-and-kill is a management tactic that may reduce the number of insecticide applications needed to manage D. suzukii. ACTTRA SWD OR1 and ACTTRA SWD TD, developed by ISCA Technologies Inc., combine D. suzukii attractants with a gel matrix. Growers add an insecticide as a killing agent. The only USDA National Organic Program approved organic insecticide that has been shown to be effective as a killing agent is spinosad. This study aimed to determine the efficacy of other USDA National Organic Program approved organic insecticides, including Grandevo 30 WDG (Chromobacterium subtsugae strain PRAA4-1 30%), MBI-203 SC2 (C. subtsugae strain PRAA4-1 98%), Venerate XC (Burkholderia spp. Strain A396 94.45%), MBI-306 SC1 (B. rinojensis Strain A396 94.45%), Azera (azadirachtin 1.2% + pyrethrins 1.4%), and PyGanic (pyrethrins 1.4%), when used as the killing agent with the two ACTTRA SWD products. Lab and cage bioassays were conducted. Entrust (spinosad 22.5%) and PyGanic were the only compounds that showed some efficacy when used with ACTTRA SWD OR1 and ACTTRA SWD TD.


Assuntos
Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Drosophila , Controle de Insetos/métodos , Frutas
11.
Insects ; 14(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835744

RESUMO

Asian bean thrips, Megalurothrips usitatus Bagnall, are a serious pest of vegetable crops, especially leguminous crops, across the Asian continent. In Florida, it is a new invasive pest of snap beans. In 2019, it was recorded for the first time in the United States in snap bean (Phaseolus vulgaris) fields. Another thrips species, melon thrips, Thrips palmi Karny, is also a serious pest that affects several vegetable crops. Within-plant and within-field distribution patterns of M. usitatus and T. palmi were determined in snap bean fields in southern Florida. The highest number of both thrips species (Asian bean thrips and melon thrips) in snap beans were in flowers, followed by leaves and pods. Both adults and immatures of these thrips exhibited regular to clumped distribution patterns in bean fields. Several statistical indices showed agreement in the distribution patterns of Asian bean thrips, melon thrips, and larvae, irrespective of sampling units and plot size, in three years of study. In most instances, the distribution of Asian bean thrips and melon thrips was aggregated. This study assessed the optimum sample size to accurately determine the population density of these thrips for management purposes. The results from this study will be useful for implementing targeted management programs against thrips pests, thereby reducing labor costs and time. This information will also help reduce agrochemical use.

12.
Insects ; 14(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37754708

RESUMO

In the USA, tomato chlorotic spot virus (TCSV) was first identified in Miami-Dade County of Florida in 2012. This viral disease is transmitted by thrips (Thysanoptera: Thripidae) of different species, imposing a serious threat to the entire tomato production in the state. Both cultural and chemical control techniques could be essential tools to combat this vector-borne disease. In the present two-year-long study, we determined the effect of different types of plastic mulches and biorational insecticides on managing thrips and TCSV. Results from the leaf and flower samples showed a significantly lower adult thrips population in Entrust®SC treated tomatoes than in other treated and untreated tomatoes in 2018. Silver on black and silver on white reflective plastic mulches significantly reduced the adult thrips population in 2018. In both study years, marketable yield was significantly higher in tomatoes treated with Entrust®SC and reflective plastic mulches than in other treatments. The incidence of TCSV was significantly reduced in tomatoes treated with Entrust®SC and reflective plastic mulches than the untreated control in 2018. Marketable yield was negatively correlated with the thrips population, as observed from the Pearson correlation coefficient analysis. This research describes a potentially viable management program for thrips and thrips-transmitted TCSV.

13.
PLoS One ; 18(12): e0293587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060506

RESUMO

Attract-and-kill (A&K) is a potential alternative control tactic for managing the invasive spotted-wing drosophila, Drosophila suzukii Matsumura. Here, we compared the efficacy of two novel A&K formulations based on proprietary blends-ACTTRA SWD OR1 (henceforth OR1) and ACTTRA SWD TD (henceforth TD)-in managing D. suzukii. Using two-choice bioassays, we compared OR1 and TD for their relative attractiveness to adult D. suzukii. Additionally, we tested how the addition of (1) a red dye (visual cue) and (2) the insecticide spinosad (Entrust™) to the OR1 and TD formulations influenced the attraction of adult D. suzukii in the presence of blueberry fruits. Finally, complementary laboratory efficacy (no-choice) bioassays were conducted to assess the mortality of adult D. suzukii exposed to OR1 and TD. A direct comparison between TD and OR1 formulations indicated the TD formulation was ~8 times more attractive than OR1. Adding a red dye to the TD or OR1 formulation did not significantly alter the attraction or mortality of adult D. suzukii compared to the formulation without a dye. Similarly, irrespective of dye status, adding spinosad to either the TD or OR1 formulation did not alter the adult D. suzukii behavioral response to these formulations but resulted in significantly higher D. suzukii mortality. Overall, the TD formulations resulted in significantly higher, or at least comparable, mortality to the OR1 formulations. In summary, our laboratory results demonstrated the higher efficacy of a TD-based A&K product in managing D. suzukii over its well-tested predecessor, the OR1 formulation, confirming its potential as a new behavioral tactic against this pest.


Assuntos
Controle de Insetos , Inseticidas , Animais , Controle de Insetos/métodos , Drosophila/fisiologia , Inseticidas/farmacologia , Frutas , Bioensaio
14.
J Econ Entomol ; 105(2): 480-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22606818

RESUMO

In Florida, southern highbush (SHB) blueberries (Vaccinium corymbosum L. x Vaccinium darrowi Camp) are grown for a highly profitable early season fresh market. Flower thrips are the key pest of SHB blueberries, and Frankliniella bispinosa (Morgan) is the most common species found. Flower thrips injure blueberry flowers by feeding and ovipositing in all developing tissues. These injuries can lead to scarring of developing fruit. The objectives of this study were to determine the relationship between thrips and yield in different SHB blueberry cultivars and to determine an action threshold. Experiments were conducted during early spring 2007 and 2008 on four farms; a research farm in Citra, FL; and three commercial farms, two in Hernando Co., FL., and one in Lake Co., FL. At the Citra farm, 'Emerald', 'Jewel', 'Millennia', and 'Star' blueberries were compared in 2007, and all but Star were compared in 2008. On the Hernando and Lake Co. farms, two treatment thresholds (100 and 200 thrips per trap) and an untreated control and four cultivars (Emerald, Jewel, Millennia, and 'Windsor') were compared. Emerald consistently had more thrips per trap and per flower than the other cultivars on all four farms. However, this did not always lead to an increase in fruit injury. Thrips numbers exceeded the threshold on only one farm in 2007, and there was a significantly lower proportion of injured and malformed fruit in the 100 thrips per trap threshold treatment compared with the control on this farm.


Assuntos
Controle de Insetos/economia , Tisanópteros/fisiologia , Vaccinium/crescimento & desenvolvimento , Animais , Comportamento Alimentar , Florida , Frutas , Controle de Insetos/métodos , Dinâmica Populacional , Distribuição Aleatória , Estações do Ano , Especificidade da Espécie , Vaccinium/fisiologia
15.
Environ Entomol ; 51(1): 22-31, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171279

RESUMO

Plastic mulch of different colors and ultraviolet (UV) reflectivity individually or combined with released arthropod predators is an important component of an integrated pest management strategy. In 2015 and 2016, we evaluated the density and within-plant distribution of a released predatory mite, Amblyseius swirskii Athius-Henriot (Acari: Phytoseiidae) in snap bean (Phaseolus vulgaris L.), cucumber (Cucumis sativus L.), yellow squash (Cucurbita pepo L.), eggplant (Solanum melongena L.), Jalapeno pepper (Capsicum annuum L.), and tomato (Solanum lycopersicum L.) grown on different plastic mulches. The mulch treatments evaluated were: metalized top and black bottom, metalized top and white bottom, black-on-black, black-on-white, white-on-black, and bare soil with no mulch. Crop species had a significant effect on the density of A. swirskii. Eggplant and cucumber had higher numbers of A. swirskii than the other crops tested in 2015. In 2016, the density of A. swirskii was higher on eggplant than on cucumber. There was a variation in the distribution of A. swirskii in different strata of the plant canopies with the highest number in the bottom stratum of each crop, which was positively correlated with the population of Thrips palmi Karny (Thysanoptera: Thripidae). Mulch type had no effect on the density or distribution of A. swirskii in any strata of any of the crops tested. The results of this study indicate that releasing A. swirskii is compatible with the use of UV-reflective mulch. This information about host preference and within-plant distribution of A. swirskii should be of value in pest management programs for the crops studied.


Assuntos
Ácaros , Verduras , Animais , Controle Biológico de Vetores/métodos , Dispersão Vegetal , Plásticos , Comportamento Predatório
16.
Insects ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292905

RESUMO

The spotted-wing Drosophila (SWD), Drosophila suzukii, is native species in Southeast Asia. For over a decade, this invasive pest has been globally expanding. The economic losses to soft fruits and stoned fruits in the United States are increasing every year. Presently, the only viable tool to reduce the SWD population is the continued use of broad-spectrum insecticides. Pesticide resistance is appearing in the populations for the SWD. Organic farmers have limited options to control this pest in open fields. The major goal of this study was to develop cost-effective pest management strategies to manage the SWD using three types of mulches (two plant-based and one fabric-based) to reduce fly population and damage in open blueberry fields in north Florida. The study was conducted in two fruiting seasons (2017 and 2018). The study results demonstrated that the fly trap catches in 2017 shortleaf pine needle mulch had much higher populations (about 2.5-fold) of the SWD than all other treatments. In 2018, the numbers were about 1.7-fold more on shortleaf pine needle mulch than on other treatments. The fine texture of the mulch (pine needles) can easily facilitate the emergence of the SWD if the mulch is not thick enough. Although the pine needles covered the soil surface, it may have been too thin and thus allowed the SWD adults to emerge from the soil without much hindrance. In 2018, a higher population of the SWD was recorded from all the mulching practices. However, there were no significant differences in trap catches between all treatments. In general, the fly population is reduced with the use of pine bark and black weed fabric mulches. This is the first study that reports the effects of three mulches in controlling the SWD populations, which could benefit conventional and organic blueberry growers.

17.
J Econ Entomol ; 115(4): 1046-1053, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35296902

RESUMO

Drosophila suzukii (Matsumura) has spread rapidly, challenging berry and cherry crop production due to its ability to lay eggs into ripening fruit. To prevent infestation by this pest, insecticides are applied during fruit ripening and harvest. We field-tested the Rapid Assessment Protocol for IDentification of resistance in D. suzukii (RAPID) on seventy-eight populations collected across eight U.S. states in 2017 and 2018. Exposure to LC50 rates of malathion, methomyl, spinetoram, spinosad, and zeta-cypermethrin led to average female fly mortality of 25.0% in 2017, and after adjusting concentrations the average was 39.9% in 2018. Using LC99 × 2 discriminating concentrations in 2017 and LC90 × 8 rates in 2018, average female mortalities were 93.3% and 98.5%, respectively, indicating high overall susceptibility. However, using these high concentrations we found 32.0% of assays with survival of some female flies in 2017 and 27.8% in 2018. The adjustment in discriminating dose from 2017 to 2018 also reduced the proportion of assays with <90% survival from 17.6 to 2.9%. Populations with low mortality when exposed to spinosad were identified using this assay, triggering more detailed follow-up bioassays that identified resistant populations collected in California coastal region berry crops. Widespread evaluations of this method and subsequent validation in California, Michigan, and Georgia in 2019-2021 show that it provides a quick and low-cost method to identify populations of D. suzukii that warrant more detailed testing. Our results also provide evidence that important insecticide classes remain effective in most U.S. regions of fruit production.


Assuntos
Inseticidas , Animais , Produtos Agrícolas , Drosophila , Feminino , Frutas , Controle de Insetos/métodos , Inseticidas/farmacologia , Malation/farmacologia , Metomil/farmacologia , Estados Unidos
18.
J Econ Entomol ; 115(6): 1995-2003, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36209398

RESUMO

Spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of thin-skinned fruits in the United States. Monitoring traps are an integral part of SWD integrated pest management, allowing early detection and timely management of this pest. An ideal monitoring trap should be easy to use, effective in capturing SWD, sensitive and selective to male SWD which are easy to identify due to their spotted wings, and able to predict fruit infestation from trap captures. Deli-cup-based liquid traps (grower standard), which make in-situ observations difficult, were compared with red-panel sticky traps, both baited with commercial lures (Scentry, Trécé Broad-Spectrum (BS), and Trécé High-Specificity (HS)), across several US states in blueberries (lowbush and highbush), blackberry, raspberry, and cherry crops during 2018 and 2021. Results showed that red-panel traps effectively captured SWD, were able to detect male SWD early in the season while also being selective to male SWD all season-long, and in some cases linearly related male SWD trap captures with fruit infestation. Scentry and Trécé BS lures captured similar numbers of SWD, though Trécé BS and Trécé HS were more selective for male SWD in red panel traps than liquid traps in some cases. In conclusion, due to its ease of use with less processing time, red-panel traps are promising tools for detecting and identifying male SWD in-situ and for predicting fruit infestation. However, further research is needed to refine the trap captures and fruit infestation relationship and elucidate the trap-lure interactions in berry and cherry crops.


Assuntos
Mirtilos Azuis (Planta) , Rubus , Masculino , Animais , Drosophila , Frutas , Controle de Insetos/métodos , Produtos Agrícolas
19.
Environ Entomol ; 50(1): 12-18, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33274377

RESUMO

Scirtothrips dorsalis Hood infest strawberry (Fragaria x ananassa Duchesne, Rosaceae) fields from nearby crop fields and surrounding vegetation and cause injury to plants by feeding on young leaf tissues. Greenhouse and field studies were conducted to determine the short-range movement of S. dorsalis to assess the risk of an early S. dorsalis population to spread to adjacent plants. In a greenhouse, 25 potted strawberry plants were arranged in two concentric rows around a central plant, where plants in inner rows were 20 cm, and those in the outer rows were 40 cm from the central plant. In the field, 20 strawberry plants were arranged in two beds (90 cm apart), ten in each bed, and five plants in each row, with plants 30 cm apart. White sticky cards were placed at 60-120 cm from the central plant. Fifty S. dorsalis adults were released on a centrally located plant, and the numbers of S. dorsalis adults and larvae and feeding injury were recorded for 9-17 d on adjacent plants and sticky cards. Results showed that significantly more S. dorsalis adults and larvae remained on the initially infested plant compared to adjacent plants, although few adults were found up to 120 cm on sticky cards. The rate of spread of feeding injury was low with slight bronzing injury (<10% injury) on adjacent plants by 14-17 d. Since most S. dorsalis remained on initially infested plants for at least 2 wk, it is feasible to delay management actions and 'rescue' plants around a plant with minor injury symptoms.


Assuntos
Fragaria , Tisanópteros , Animais , Larva , Folhas de Planta , Plantas
20.
Insects ; 12(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803537

RESUMO

Scirtothrips dorsalis Hood is an invasive and foliar pest of Florida blueberry that reduces plant growth by feeding on new leaf growth. A sampling plan is needed to make informed control decisions for S. dorsalis in blueberry. Fourteen blueberry fields in central Florida were surveyed in 2017 and 2018 after summer pruning to determine the spatial and temporal distribution of S. dorsalis and to develop a fixed-precision sampling plan. A sampling unit of ten blueberry shoots (with four to five leaves each) was collected from one blueberry bush at each point along a 40 × 40 m grid. Field counts of S. dorsalis varied largely ranging from zero to 1122 adults and larvae per sampling unit. Scirtothrips dorsalis had aggregated distribution that was consistent within fields and temporally stable between summers, according to Taylor's power law (TPL) (aggregation parameter, b = 1.57), probability distributions (56 out of 70 sampling occasions fit the negative binomial distribution), Lloyd's index (b > 1 in 94% occasions), and Spatial Analysis by Distance IndicEs (31% had significant clusters). The newly developed fixed-precision sampling plan required 167, 42, seven, or three sampling units to estimate a nominal mean density of 20 S. dorsalis per sampling unit with a precision of 5%, 10%, 25%, or 40%, respectively. New knowledge on S. dorsalis distribution will aid in evaluating the timing and effectiveness of control measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA