Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(11): e202303363, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38116821

RESUMO

When bismuth atoms are incorporated into cyclic organic systems, this commonly goes along with strained or distorted molecular geometries, which can be exploited to modulate the physical and chemical properties of these compounds. In six-membered heterocycles, bismuth atoms are often accompanied by oxygen, sulfur or nitrogen as a second hetero-element. In this work, we present the first examples of six-membered rings, in which two CH units are replaced by BiX moieties (X=Cl, Br, I), resulting in dihydro-anthracene analogs. Their behavior in chemically reversible reduction reactions is explored, aiming at the generation of dibisma-anthracene (bismanthrene). Heterometallic compounds (Bi/Fe, Bi/Mn) are introduced as potential bismanthrene surrogates, as supported by bismanthrene-transfer to selenium. Analytical techniques used to investigate the reported compounds include NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.

2.
Inorg Chem ; 63(26): 12089-12099, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900030

RESUMO

The stabilization of simple, highly reactive cationic species in molecular complexes represents an important strategy to isolate and characterize compounds with uncommon or even unprecedented structural motifs and properties. Here we report the synthesis, isolation, and full characterization of chlorido-bismuth dications, stabilized only by monodentate dimethylsulfoxide (dmso) ligands: [BiCl(dmso)6][BF4]2 (1) and [BiCl(µ2-dmso)(dmso)4]2[BF4]4 (2). These compounds show unusual distorted pentagonal bipyramidal coordination geometries along with high Lewis acidities and have been analyzed by multinuclear NMR spectroscopy, elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and density functional theory calculations. Attempts to generate the bromido- and iodido-analogs gave dmso-stabilized tricationic bismuth species.

3.
Chemistry ; 29(35): e202300637, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36994844

RESUMO

Methyl and methylene compounds of arsenic and antimony have been studied by photoelectron photoion coincidence spectroscopy to investigate their relative stability. While for As both HAs=CH2 , As-CH3 and the methylene compound As=CH2 are identified in the spectrum, the only Sb compound observed is Sb-CH3 . Thus, there is a step in the main group 15 between As and Sb, regarding the relative stability of the methyl compounds. Ionisation energies, vibrational frequencies and spin-orbit splittings were determined for the methyl compound from photoion mass-selected photoelectron spectra. Although the spectroscopic results for organoantimony resemble those for the previously investigated bismuth compounds, EPR spectroscopic experiments indicate a far lower tendency for methyl transfer for Sb(CH3 )3 compared to Bi(CH3 )3 . This study concludes investigations on low-valent organopnictogen compounds.


Assuntos
Antimônio , Arsênio , Espectroscopia Fotoeletrônica , Espectrometria de Massas , Antimônio/química
4.
Chemistry ; 29(30): e202204012, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36883595

RESUMO

The molecular compound [BiDipp2 (SbF6 )], containing the bulky, donor-free bismuth cation [BiDipp2 ]+ has been synthesized and fully characterized (Dipp=2,6-iPr2 -C6 H3 ). Using its methyl analog [BiMe2 (SbF6 )] as a second reference point, the impact of steric bulk on bismuth-based Lewis acidity was investigated in a combined experimental (Gutmann-Beckett and modified Gutmann-Beckett methods) and theoretical approach (DFT calculations). Reactivity studies of the bismuth cations towards [PF6 ]- and neutral Lewis bases such as isocyanides C≡NR' revealed facile fluoride ion abstraction and straightforward Lewis pair formation, respectively. The first examples of compounds featuring bismuth-bound isocyanides have been isolated and fully characterized.

5.
Chemistry ; 29(30): e202301354, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37170665

RESUMO

Invited for the cover of this issue are the groups of Carsten von Hänisch and Crispin Lichtenberg at the Philipps University of Marburg. The image depicts a bismuth kraken, eagerly grabbing Lewis basic substrates, thereby solving scientific puzzles about bismuth-based Lewis acidity. Read the full text of the article at 10.1002/chem.202204012.

6.
Chemistry ; 29(11): e202203345, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36412126

RESUMO

The 2-aryl-3,4,5,6-tetraphenyl-1,2-azaborinines 1-EMe3 and 2-EMe3 (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6-trimethylphenyl, 2)) were synthesized by ring-expansion of borole precursors with N3 EMe3 -derived nitrenes. Desilylative hydrolysis of 1- and 2-SiMe3 yielded the corresponding N-protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe3 )2 (M=Na, K) to the corresponding group 1 salts, 1-M and 2-M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1-M or 2-M with CO2 yielded N-carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1-M or 2-M with methyl triflate, [Cp*BeCl] (Cp*=C5 Me5 ), BBr2 Ar (Ar=Ph, Mes, 2-thienyl), ECl3 (E=B, Al, Ga) and PX3 (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2-azaborinin-2-yl complexes. Salt metathesis of 1-K with BBr3 resulted not only in N-borylation but also Ph-Br exchange between the endocyclic and exocyclic boron atoms. Solution 11 B NMR data suggest that the 1,2-azaborinin-2-yl ligand is similarly electron-withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C4 BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic 11 B NMR resonances is linearly correlated to both the degree of twisting of the C4 BN ring and the tilt angle of the N-substituent. Calculations indicate that the 1,2-azaborinin-1-yl ligand has no sizeable π-donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N-substituent.

7.
Inorg Chem ; 62(44): 18228-18238, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37867302

RESUMO

The first series of 9-bisma-10-pnictatriptycenes Bi(C6H4)3Pn (2-Pn, Pn = P-Bi; see graphic) has been synthesized in a two-step procedure via suitable tris(2-bromophenyl)pnictanes 1-Pn and characterized in solution as well as in the solid state. DFT calculations suggest preferential interactions between 2-Pn and soft Lewis acids via the lighter pnictogen donor atom. Experimental studies demonstrate that even the weakest Lewis base in the series of 2-Pn, namely the dibismatriptycene 2-Bi, interacts with Lewis acidic [BiMe2(SbF6)] in solution. Analytical techniques include (VT-)NMR spectroscopy, DOSY NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.

8.
Angew Chem Int Ed Engl ; 62(24): e202218771, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36848583

RESUMO

Key challenges in modern synthetic chemistry include the design of reliable, selective, and more sustainable synthetic methods, as well as the development of promising candidates for new materials. Molecular bismuth compounds offer valuable opportunities as they show an intriguing spectrum of properties that is yet to be fully exploited: a soft character, a rich coordination chemistry, the availability of a broad variety of oxidation states (at least +V to -I) and formal charges (at least +3 to -3) at the Bi atoms, and reversible switching between multiple oxidation states. All this is paired with the status of a non-precious (semi-)metal of good availability and a tendency towards low toxicity. Recent findings show that some of these properties only come into reach, or can be substantially optimized, when charged compounds are specifically addressed. In this review, essential contributions to the synthesis, analyses, and utilization of ionic bismuth compounds are highlighted.

9.
Angew Chem Int Ed Engl ; 62(41): e202308293, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522394

RESUMO

Dynamic covalent chemistry (DCvC) is a powerful and widely applied tool in modern synthetic chemistry, which is based on the reversible cleavage and formation of covalent bonds. One of the inherent strengths of this approach is the perspective to reversibly generate in an operationally simple approach novel structural motifs that are difficult or impossible to access with more traditional methods and require multiple bond cleaving and bond forming steps. To date, these fundamentally important synthetic and conceptual challenges in the context of DCvC have predominantly been tackled by exploiting compounds of lighter p-block elements, even though heavier p-block elements show low bond dissociation energies and appear to be ideally suited for this approach. Here we show that a dinuclear organometallic bismuth compound, containing BiMe2 groups that are connected by a thioxanthene linker, readily undergoes selective and reversible cleavage of its Bi-C bonds upon exposure to external stimuli. The exploitation of DCvC in the field of organometallic heavy p-block chemistry grants access to unprecedented macrocyclic and barrel-type oligonuclear compounds.

10.
Eur J Inorg Chem ; 2022(7): e202100934, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35873275

RESUMO

The diorgano(bismuth)alcoholate [Bi((C6H4CH2)2S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi-O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.

11.
Chemistry ; 27(20): 6230-6239, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33326650

RESUMO

The behavior of the redox-active aminotroponiminate (ATI) ligand in the coordination sphere of bismuth has been investigated in neutral and cationic compounds, [Bi(ATI)3 ] and [Bi(ATI)2 Ln ][A] (L=neutral ligand; n=0, 1; A=counteranion). Their coordination chemistry in solution and in the solid state has been analyzed through (variable-temperature) NMR spectroscopy, line-shape analysis, and single-crystal X-ray diffraction analyses, and their Lewis acidity has been evaluated by using the Gutmann-Beckett method (and modifications thereof). Cyclic voltammetry, in combination with DFT calculations, indicates that switching between ligand- and metal-centered redox events is possible by altering the charge of the compounds from 0 in neutral species to +1 in cationic compounds. This adds important facets to the rich redox chemistry of ATIs and to the redox chemistry of bismuth compounds, which is, so far, largely unexplored.

12.
Chemistry ; 27(57): 14250-14262, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34314083

RESUMO

Aminotroponiminate (ATI) ligands are a versatile class of redox-active and potentially cooperative ligands with a rich coordination chemistry that have consequently found a wide range of applications in synthesis and catalysis. While backbone substitution of these ligands has been investigated in some detail, the impact of electron-withdrawing groups on the coordination chemistry and reactivity of ATIs has been little investigated. We report here Li, Na, and K salts of an ATI ligand with a nitro-substituent in the backbone. It is demonstrated that the NO2 group actively contributes to the coordination chemistry of these complexes, effectively competing with the N,N-binding pocket as a coordination site. This results in an unprecedented E/Z isomerisation of an ATI imino group and culminates in the isolation of the first "naked" (i. e., without directional bonding to a metal atom) ATI anion. Reactions of sodium ATIs with silver(I) and tritylium salts gave the first N,N-coordinated silver ATI complexes and unprecedented backbone substitution reactions. Analytical techniques applied in this work include multinuclear (VT-)NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.


Assuntos
Iminas , Dióxido de Nitrogênio , Cristalografia por Raios X , Ligantes , Tropolona/análogos & derivados
13.
Inorg Chem ; 60(24): 19086-19097, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818003

RESUMO

Cationization of Bi(NPh2)3 has recently been reported to allow access to single- and double-CH activation reactions, followed by selective transformation of Bi-C into C-X functional groups (X = electrophile). Here we show that this approach can successfully be transferred to a range of bismuth amides with two aryl groups at the nitrogen, Bi(NRaryl2)3. Exchange of one nitrogen-bound aryl group for an alkyl substituent gave the first example of a homoleptic bismuth amide with a mixed aryl/alkyl substitution pattern at the nitrogen, Bi(NPhiPr)3. This compound is susceptible to selective N-N radical coupling in its neutral form and also undergoes selective CH activation when transformed into a cationic species. The second CH activation is blocked due to the absence of a second aryl moiety at nitrogen. The Lewis acidity of neutral bismuth amides is compared with that of cationic species "[Bi(aryl)(amide)(L)n]+" and "[Bi(aryl)2(L)n]+" based on the (modified) Gutmann-Beckett method (L = tetrahydrofuran or pyridine). The heteroaromatic character of [Bi(C6H3R)2NH(triflate)] compounds, which are iso-valence-electronic with anthracene, is investigated by theoretical methods. Analytical methods used in this work include nuclear magnetic resonance spectroscopy, single-crystal X-ray diffraction, mass spectrometry, and density functional theory calculations.

14.
Angew Chem Int Ed Engl ; 60(12): 6441-6445, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33315293

RESUMO

The controlled release of well-defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr2 )3 ] readily release aminyl radicals [NAr2 ]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar2 N-NAr2 , as a result of highly selective N-N coupling. The exploitation of facile homolytic Bi-Pn bond cleavage for Pn-Pn bond formation was extended to higher homologues of the pnictogens (Pn=N-As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR2 to give R2 Pn-PnR2 . Analyses by NMR and EPR spectroscopy, single-crystal X-ray diffraction, and DFT calculations reveal low Bi-N homolytic bond-dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions.

15.
Angew Chem Int Ed Engl ; 60(46): 24388-24394, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34378855

RESUMO

The isolation of simple, fundamentally important, and highly reactive organometallic compounds remains among the most challenging tasks in synthetic chemistry. The detailed characterization of such compounds is key to the discovery of novel bonding scenarios and reactivity. The dimethylbismuth cation, [BiMe2 (SbF6 )] (1), has been isolated and characterized. Its reaction with BiMe3 gives access to an unprecedented dative bond, a Bi→Bi donor-acceptor interaction. The exchange of methyl groups (arguably the simplest hydrocarbon moiety) between different metal atoms is among the most principal types of reactions in organometallic chemistry. The reaction of 1 with BiMe3 enables an SE 2(back)-type methyl exchange, which is, for the first time, investigated in detail for isolable, (pseudo-)homoleptic main-group compounds.

16.
Chemistry ; 26(44): 9674-9687, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048770

RESUMO

Recent years have witnessed remarkable advances in radical reactions involving main-group metal complexes. This includes the isolation and detailed characterization of main-group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main-group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition-metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional-group tolerances have been reported. Recent findings demonstrate the potential of main-group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways.

17.
Chemistry ; 26(45): 10250-10258, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32428329

RESUMO

Three-coordinate cationic bismuth compounds [Bi(diaryl)(EPMe3 )][SbF6 ] have been isolated and fully characterized (diaryl=[(C6 H4 )2 C2 H2 ]2- , E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR3 interactions (R=monoanionic substituent). The 31 P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe3 Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann-Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se-based) rather than a hard (O/N-based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.

18.
Chemistry ; 26(64): 14551-14555, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32573876

RESUMO

A series of diorgano(bismuth)chalcogenides, [Bi(di-aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically-induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.

19.
Inorg Chem ; 59(6): 3367-3376, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31891491

RESUMO

Bismepines are 3-fold unsaturated seven-membered rings containing one bismuth atom. A set of dibenzobismepine complexes have been synthesized and isolated, among them a dinuclear bismepine, halobismepines, and cationic bismepines. They were investigated with respect to the structural properties, olefin-bismuth interactions, heteroaromaticity, and Lewis acidity (including a comparison with a range of simple bismuth and group 13 Lewis acids). Applied analytical techniques include NMR spectroscopy, single-crystal X-ray analysis, elemental analysis, and density functional theory calculations.

20.
Inorg Chem ; 59(23): 17678-17688, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226783

RESUMO

The formation of salicylaldimine derivatives via ring contraction as byproducts in 2-aminotropone syntheses has been investigated. Salicylaldiminate (SAI) complexes of the alkali metals Li-K have been synthesized and transformed into heterobimetallic complexes. Important findings include an unusual double heterocubane structure of the homometallic sodium SAI, an unprecedented ligand-induced E/Z isomerization of the aldimine functional group in the homometallic potassium SAI, and the first example of a structurally authenticated mixed-metal SAI based on s-block central atoms. Rapid equilibria have been shown to play a crucial role in the solution phase chemistry of mixed-metal SAIs. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, VT- and DOSY NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analysis, and DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA