Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; 128: 107529, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857637

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations. As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening. Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.

2.
J Vis Exp ; (188)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36342136

RESUMO

Cardiac contractility assessment is of immense importance for the development of new therapeutics and their safe transition into clinical stages. While human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold promise to serve as a human-relevant model in preclinical phases of drug discovery and safety pharmacology, their maturity is still controversial in the scientific community and under constant development. We present a hybrid contractility and impedance/extracellular field potential (EFP) technology, adding significant pro-maturation features to an industry-standard 96-well platform. The impedance/EFP system monitors cellular functionality in real-time. Besides the beat rate of contractile cells, the electrical impedance spectroscopy readouts detect compound-induced morphological changes like cell density and integrity of the cellular monolayer. In the other component of the hybrid cell analysis system, the cells are cultured on bio-compliant membranes that mimic the mechanical environment of real heart tissue. This physiological environment supports the maturation of hiPSC-CMs in vitro, leading to more adult-like contractile responses including positive inotropic effects after treatment with isoproterenol, S-Bay K8644, or omecamtiv mecarbil. Parameters such as the amplitude of contraction force (mN/mm2) and beat duration also reveal downstream effects of compounds with influence on electrophysiological properties and calcium handling. The hybrid system provides the ideal tool for holistic cell analysis, allowing preclinical cardiac risk assessment beyond the current perspectives of human-relevant cell-based assays.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Contração Miocárdica , Fenômenos Eletrofisiológicos , Células Híbridas , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA