Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 31718-31733, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37858990

RESUMO

OptoMechanical Modulation Tomography (OMMT) exploits compressed sensing to reconstruct high resolution microscopy volumes from fewer measurement images compared to exhaustive section sampling in conventional light sheet microscopy. Nevertheless, the volumetric reconstruction process is computationally expensive, making it impractically slow to use on large-size images, and prone to generating visual artefacts. Here, we propose a reconstruction approach that uses a 1+2D Total Variation (TV1+2) regularization that does not generate such artefacts and is amenable to efficient implementation using parallel computing. We evaluate our method for accuracy and scaleability on simulated and experimental data. Using a high quality, but computationally expensive, Plug-and-Play (PnP) method that uses the BM4D denoiser as a benchmark, we observe that our approach offers an advantageous trade-off between speed and accuracy.

2.
Development ; 141(3): 585-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401373

RESUMO

Over the course of development, the vertebrate heart undergoes a series of complex morphogenetic processes that transforms it from a simple myocardial epithelium to the complex 3D structure required for its function. One of these processes leads to the formation of trabeculae to optimize the internal structure of the ventricle for efficient conduction and contraction. Despite the important role of trabeculae in the development and physiology of the heart, little is known about their mechanism of formation. Using 3D time-lapse imaging of beating zebrafish hearts, we observed that the initiation of cardiac trabeculation can be divided into two processes. Before any myocardial cell bodies have entered the trabecular layer, cardiomyocytes extend protrusions that invade luminally along neighboring cell-cell junctions. These protrusions can interact within the trabecular layer to form new cell-cell contacts. Subsequently, cardiomyocytes constrict their abluminal surface, moving their cell bodies into the trabecular layer while elaborating more protrusions. We also examined the formation of these protrusions in trabeculation-deficient animals, including erbb2 mutants, tnnt2a morphants, which lack cardiac contractions and flow, and myh6 morphants, which lack atrial contraction and exhibit reduced flow. We found that, compared with cardiomyocytes in wild-type hearts, those in erbb2 mutants were less likely to form protrusions, those in tnnt2a morphants formed less stable protrusions, and those in myh6 morphants extended fewer protrusions per cell. Thus, through detailed 4D imaging of beating hearts, we have identified novel cellular behaviors underlying cardiac trabeculation.


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Imageamento Tridimensional/métodos , Morfogênese , Miócitos Cardíacos/citologia , Animais , Extensões da Superfície Celular/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
3.
Development ; 140(21): 4426-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089470

RESUMO

Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function.


Assuntos
Artérias/embriologia , Embrião não Mamífero/fisiologia , Hemodinâmica/fisiologia , Modelos Biológicos , Fluxo Pulsátil/fisiologia , Peixe-Zebra/embriologia , Animais , Fenômenos Biomecânicos , Viscosidade Sanguínea , Microscopia Confocal , Pinças Ópticas , Gravação em Vídeo
5.
J Opt Soc Am A Opt Image Sci Vis ; 30(10): 2012-20, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24322857

RESUMO

Discretization of continuous (analog) convolution operators by direct sampling of the convolution kernel and use of fast Fourier transforms is highly efficient. However, it assumes the input and output signals are band-limited, a condition rarely met in practice, where signals have finite support or abrupt edges and sampling is nonideal. Here, we propose to approximate signals in analog, shift-invariant function spaces, which do not need to be band-limited, resulting in discrete coefficients for which we derive discrete convolution kernels that accurately model the analog convolution operator while taking into account nonideal sampling devices (such as finite fill-factor cameras). This approach retains the efficiency of direct sampling but not its limiting assumption. We propose fast forward and inverse algorithms that handle finite-length, periodic, and mirror-symmetric signals with rational sampling rates. We provide explicit convolution kernels for computing coherent wave propagation in the context of digital holography. When compared to band-limited methods in simulations, our method leads to fewer reconstruction artifacts when signals have sharp edges or when using nonideal sampling devices.

6.
Biol Imaging ; 3: e20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510170

RESUMO

In vivo fluorescence microscopy is a powerful tool to image the beating heart in its early development stages. A high acquisition frame rate is necessary to study its fast contractions, but the limited fluorescence intensity requires sensitive cameras that are often too slow. Moreover, the problem is even more complex when imaging distinct tissues in the same sample using different fluorophores. We present Paired Alternating AcQuisitions, a method to image cyclic processes in multiple channels, which requires only a single (possibly slow) camera. We generate variable temporal illumination patterns in each frame, alternating between channel-specific illuminations (fluorescence) in odd frames and a motion-encoding brightfield pattern as a common reference in even frames. Starting from the image pairs, we find the position of each reference frame in the cardiac cycle through a combination of image-based sorting and regularized curve fitting. Thanks to these estimated reference positions, we assemble multichannel videos whose frame rate is virtually increased. We characterize our method on synthetic and experimental images collected in zebrafish embryos, showing quantitative and visual improvements in the reconstructed videos over existing nongated sorting-based alternatives. Using a 15 Hz camera, we showcase a reconstructed video containing two fluorescence channels at 100 fps.

7.
PLoS Biol ; 7(11): e1000246, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19924233

RESUMO

Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis.


Assuntos
Valvas Cardíacas/embriologia , Coração/embriologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Circulação Sanguínea/efeitos dos fármacos , Circulação Sanguínea/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hemodinâmica/efeitos dos fármacos , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Lidocaína/farmacologia , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Genesis ; 49(7): 514-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21638751

RESUMO

Images of multiply labeled fluorescent samples provide unique insights into the localization of molecules, cells, and tissues. The ability to image multiple channels simultaneously at high speed without cross talk is limited to a few colors and requires dedicated multichannel or multispectral detection procedures. Simpler microscopes, in which each color is imaged sequentially, produce a much lower frame rate. Here, we describe a technique to image, at high frame rate, multiply labeled samples that have a repeating motion. We capture images in a single channel at a time over one full occurrence of the motion then repeat acquisition for other channels over subsequent occurrences. We finally build a high-speed multichannel image sequence by combining the images after applying a normalized mutual information-based time registration procedure. We show that this technique is amenable to image the beating heart of a double-labeled embryonic quail in three channels (brightfield, yellow, and mCherry fluorescent proteins) using a fluorescence wide-field microscope equipped with a single monochrome camera and without fast channel switching optics. We experimentally evaluate the accuracy of our method on image series from a two-channel confocal microscope.


Assuntos
Rastreamento de Células , Processamento de Imagem Assistida por Computador , Animais , Biologia Computacional , Biologia do Desenvolvimento/métodos , Microscopia Confocal , Microscopia de Fluorescência , Reprodutibilidade dos Testes
9.
Dev Dyn ; 239(3): 914-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20063419

RESUMO

Using the transposon-mediated enhancer trap (ET), we generated 18 cardiac enhancer trap (CET) transgenic zebrafish lines. They exhibit EGFP expression in defined cell types--the endocardium, myocardium, and epicardium--or in anatomical regions of the heart--the atrium, ventricle, valves, or bulbus arteriosus. Most of these expression domains are maintained into adulthood. The genomic locations of the transposon insertions were determined by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The expression pattern of EGFP in some CETs is unique and recapitulates expression of genes flanking the transposon insertion site. The CETs enabled us to capture the dynamics of the embryonic heart beating in vivo using fast scanning confocal microscopy coupled with image reconstruction, producing three-dimensional movies in time (4D) illustrating region-specific features of heart contraction. This collection of CET lines represents a toolbox of markers for in vivo studies of heart development, physiology, and drug screening.


Assuntos
Técnicas Genéticas , Coração/embriologia , Miocárdio/metabolismo , Animais , Doenças Cardiovasculares/patologia , Sistema Cardiovascular , Modelos Animais de Doenças , Endocárdio/patologia , Elementos Facilitadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Átrios do Coração/patologia , Microscopia Confocal/métodos , Pericárdio/patologia , Transgenes , Peixe-Zebra
10.
Artigo em Inglês | MEDLINE | ID: mdl-32305918

RESUMO

Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with highresolution microscopes leads to unsharp image regions and makes depth localization and quantitative image interpretation difficult. Here, we present a method that improves the resolution of light microscopy images of such objects by locally estimating image distortion while jointly estimating object distance to the focal plane. Specifically, we estimate the parameters of a spatiallyvariant Point Spread Function (PSF) model using a Convolutional Neural Network (CNN), which does not require instrument- or object-specific calibration. Our method recovers PSF parameters from the image itself with up to a squared Pearson correlation coefficient of 0.99 in ideal conditions, while remaining robust to object rotation, illumination variations, or photon noise. When the recovered PSFs are used with a spatially-variant and regularized Richardson-Lucy (RL) deconvolution algorithm, we observed up to 2.1 dB better Signal-to-Noise Ratio (SNR) compared to other Blind Deconvolution (BD) techniques. Following microscope-specific calibration, we further demonstrate that the recovered PSF model parameters permit estimating surface depth with a precision of 2 micrometers and over an extended range when using engineered PSFs. Our method opens up multiple possibilities for enhancing images of non-flat objects with minimal need for a priori knowledge about the optical setup.

11.
J Biomed Opt ; 25(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33107247

RESUMO

SIGNIFICANCE: Despite recent developments in microscopy, temporal aliasing can arise when imaging dynamic samples. Modern sampling frameworks, such as generalized sampling, mitigate aliasing but require measurement of temporally overlapping and potentially negative-valued inner products. Conventional cameras cannot collect these directly as they operate sequentially and are only sensitive to light intensity. AIM: We aim to mitigate aliasing in microscopy of dynamic monochrome samples by implementing generalized sampling via the use of a color camera and modulated color illumination. APPROACH: We solve the overlap problem by spectrally multiplexing the acquisitions and using (positive) B-spline segments as projection kernels. Reconstruction involves spectral unmixing and inverse filtering. We implemented this method using a color LED illuminator. We evaluated its performance by imaging a rotating grid and its applicability by imaging the beating zebrafish embryo heart in transmission and light-sheet microscopes. RESULTS: Compared to stroboscopic imaging, our method mitigates aliasing with performance improving as the projection order increases. The approach can be implemented in conventional microscopes but is limited by the number of available LED colors and camera channels. CONCLUSIONS: Generalized sampling can be implemented via color modulation in microscopy to mitigate temporal aliasing. The simple hardware requirements could make it applicable to other optical imaging modalities.


Assuntos
Iluminação , Peixe-Zebra , Animais , Cor , Microscopia de Fluorescência , Imagem Óptica
12.
Opt Lett ; 34(23): 3704-6, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19953168

RESUMO

Recent progress in optical coherence tomography (OCT) allows imaging dynamic structures and fluid flow within scattering tissue, such as the beating heart and blood flow in mouse embryos. Accurate representation and analysis of these dynamic behaviors require reducing the noise of the acquired data. Although noise can be reduced by averaging multiple neighboring pixels in space or time, such operations reduce the effective spatial or temporal resolution that can be achieved. We have developed a computational postprocessing technique to restore image sequences of cyclically moving structures that preserves frame rate and spatial resolution. The signal-to-noise ratio (SNR) is improved by combining images from multiple cycles that have been synchronized with a temporally elastic registration procedure. Here we show how this technique can be applied to OCT images of the circulatory system in cultured mouse embryos. Our technique significantly improves the SNR while preserving temporal and spatial resolution.


Assuntos
Embrião de Mamíferos/irrigação sanguínea , Coração/embriologia , Coração/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Periodicidade , Tomografia de Coerência Óptica , Animais , Camundongos , Movimento
13.
Biomed Opt Express ; 10(9): 4727-4741, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565521

RESUMO

Limited time-resolution in microscopy is an obstacle to many biological studies. Despite recent advances in hardware, digital cameras have limited operation modes that constrain frame-rate, integration time, and color sensing patterns. In this paper, we propose an approach to extend the temporal resolution of a conventional digital color camera by leveraging a multi-color illumination source. Our method allows for the imaging of single-hue objects at an increased frame-rate by trading spectral for temporal information (while retaining the ability to measure base hue). It also allows rapid switching to standard RGB acquisition. We evaluated the feasibility and performance of our method via experiments with mobile resolution targets. We observed a time-resolution increase by a factor 2.8 with a three-fold increase in temporal sampling rate. We further illustrate the use of our method to image the beating heart of a zebrafish larva, allowing the display of color or fast grayscale images. Our method is particularly well-suited to extend the capabilities of imaging systems where the flexibility of rapidly switching between high frame rate and color imaging are necessary.

14.
Biomed Opt Express ; 8(11): 5349-5358, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188125

RESUMO

To achieve approximately parallel projection geometry, traditional optical projection tomography (OPT) requires the use of low numerical aperture (NA) objectives, which have a long depth-of-field at the expense of poor lateral resolution. Particularly promising methods to improve spatial resolution include ad-hoc post-processing filters that limit the effect of the system's MTF and focal-plane-scanning OPT (FPS-OPT), an alternative acquisition procedure that allows the use of higher NA objectives by limiting the effect of their shallow depth of field yet still assumes parallel projection rays during reconstruction. Here, we provide a detailed derivation that establishes the existence of a direct inversion formula for FPS-OPT. Based on this formula, we propose a point spread function-aware algorithm that is similar in form and complexity to traditional filtered backprojection (FBP). With simulations, we demonstrate that our point-spread-function aware FBP for FPS-OPT leads to more accurate images than both traditional OPT with deconvolution and FPS-OPT with naive FBP reconstruction. We further illustrate the technique on experimental zebrafish data, which shows that our approach reduces out-of-focus blur compared to a direct FBP reconstruction with FPS-OPT.

16.
Gene Expr Patterns ; 21(2): 89-96, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27593944

RESUMO

The cardiac conduction system (CCS) propagates and coordinates the electrical excitation that originates from the pacemaker cells, throughout the heart, resulting in rhythmic heartbeat. Its defects result in life-threatening arrhythmias and sudden cardiac death. Understanding of the factors involved in the formation and function of the CCS remains incomplete. By transposon assisted transgenesis, we have developed enhancer trap (ET) lines of zebrafish that express fluorescent protein in the pacemaker cells at the sino-atrial node (SAN) and the atrio-ventricular region (AVR), termed CCS transgenics. This expression pattern begins at the stage when the heart undergoes looping morphogenesis at 36 h post fertilization (hpf) and is maintained into adulthood. Using the CCS transgenics, we investigated the effects of perturbation of cardiac function, as simulated by either the absence of endothelium or hemodynamic stimulation, on the cardiac conduction cells, which resulted in abnormal compaction of the SAN. To uncover the identity of the gene represented by the EGFP expression in the CCS transgenics, we mapped the transposon integration sites on the zebrafish genome to positions in close proximity to the gene encoding fibroblast growth homologous factor 2a (fhf2a). Fhf2a is represented by three transcripts, one of which is expressed in the developing heart. These transgenics are useful tools for studies of development of the CCS and cardiac disease.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Sistema de Condução Cardíaco/crescimento & desenvolvimento , Morfogênese/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Nó Atrioventricular/crescimento & desenvolvimento , Nó Atrioventricular/metabolismo , Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos/genética , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Sistema de Condução Cardíaco/metabolismo , Nó Sinoatrial/crescimento & desenvolvimento , Nó Sinoatrial/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
17.
J Biomed Opt ; 10(5): 054001, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16292961

RESUMO

Being able to acquire, visualize, and analyze 3D time series (4D data) from living embryos makes it possible to understand complex dynamic movements at early stages of embryonic development. Despite recent technological breakthroughs in 2D dynamic imaging, confocal microscopes remain quite slow at capturing optical sections at successive depths. However, when the studied motion is periodic--such as for a beating heart--a way to circumvent this problem is to acquire, successively, sets of 2D+time slice sequences at increasing depths over at least one time period and later rearrange them to recover a 3D+time sequence. In other imaging modalities at macroscopic scales, external gating signals, e.g., an electro-cardiogram, have been used to achieve proper synchronization. Since gating signals are either unavailable or cumbersome to acquire in microscopic organisms, we have developed a procedure to reconstruct volumes based solely on the information contained in the image sequences. The central part of the algorithm is a least-squares minimization of an objective criterion that depends on the similarity between the data from neighboring depths. Owing to a wavelet-based multiresolution approach, our method is robust to common confocal microscopy artifacts. We validate the procedure on both simulated data and in vivo measurements from living zebrafish embryos.


Assuntos
Algoritmos , Embrião não Mamífero/citologia , Coração/embriologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Miocárdio/citologia , Animais , Artefatos , Embrião não Mamífero/fisiologia , Coração/fisiologia , Técnicas In Vitro , Movimento , Contração Miocárdica/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Peixe-Zebra
18.
Biomed Opt Express ; 6(6): 2056-66, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26114028

RESUMO

We present an imaging and image reconstruction pipeline that captures the dynamic three-dimensional beating motion of the live embryonic zebrafish heart at subcellular resolution. Live, intact zebrafish embryos were imaged using 2-photon light sheet microscopy, which offers deep and fast imaging at 70 frames per second, and the individual optical sections were assembled into a full 4D reconstruction of the beating heart using an optimized retrospective image registration algorithm. This imaging and reconstruction platform permitted us to visualize protein expression patterns at endogenous concentrations in zebrafish gene trap lines.

19.
Cell Rep ; 11(10): 1564-76, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26051936

RESUMO

Desminopathies belong to a family of muscle disorders called myofibrillar myopathies that are caused by Desmin mutations and lead to protein aggregates in muscle fibers. To date, the initial pathological steps of desminopathies and the impact of desmin aggregates in the genesis of the disease are unclear. Using live, high-resolution microscopy, we show that Desmin loss of function and Desmin aggregates promote skeletal muscle defects and alter heart biomechanics. In addition, we show that the calcium dynamics associated with heart contraction are impaired and are associated with sarcoplasmic reticulum dilatation as well as abnormal subcellular distribution of Ryanodine receptors. Our results demonstrate that desminopathies are associated with perturbed excitation-contraction coupling machinery and that aggregates are more detrimental than Desmin loss of function. Additionally, we show that pharmacological inhibition of aggregate formation and Desmin knockdown revert these phenotypes. Our data suggest alternative therapeutic approaches and further our understanding of the molecular determinants modulating Desmin aggregate formation.


Assuntos
Cardiomiopatias/genética , Desmina/genética , Desmina/metabolismo , Coração/fisiologia , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Animais , Fenômenos Biomecânicos , Cardiomiopatias/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Humanos , Distrofias Musculares/patologia , Mutação , Peixe-Zebra
20.
Mol Biotechnol ; 25(3): 229-40, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14668537

RESUMO

Because peptide nucleic acids (PNAs) are capable of blocking amplification of deoxyribonucleic acid (DNA) by Taq DNA polymerase in vitro, we postulated that PNAs might be able to block replication in vivo. To explore this possibility, we assessed the ability of PNA to specifically block the replication of pUC19 plasmids by allowing a PNA, directed against segments of the Ampr sequence to bind to pUC19 prior to electroporation into Escherichia coli, strain DH10B. Colonies produced by this maneuver not only remained sensitive to ampicillin but were also incapable of blue color production on X-gal-containing media, thus demonstrating true blockade of pUC19 replication, rather than antisense activity. The ability of the PNA to prevent pUC19 replication in these experiments was shown to be dose related. Attempts to prevent the replication of E. coli using a PNA directed against a portion of the lac Z sequence found within the bacterial genome were not uniformly successful. Subsequent experiments showed that the electroporated PNA did not consistently enter a sufficient number of cells for an effect to be demonstrated in the assays used. Nonetheless, this is the first demonstration of in vivo complete replication blockade by a PNA and opens up the potential for new forms of specific antibiosis in both prokaryotic and eukaryotic cells.


Assuntos
Replicação do DNA , DNA Bacteriano/metabolismo , Escherichia coli/genética , Ácidos Nucleicos Peptídicos/metabolismo , Ácidos Nucleicos Peptídicos/farmacologia , Plasmídeos , Transcrição Gênica , DNA Polimerase Dirigida por DNA/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/fisiologia , Oligonucleotídeos/química , Oligonucleotídeos/genética , Ácidos Nucleicos Peptídicos/genética , Taq Polimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA