RESUMO
ß-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable ß-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 ß-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized ß-glucosidases for 2G-biofuel production for industry, biotechnology, and science.
Assuntos
Biocombustíveis , beta-Glucosidase , beta-Glucosidase/genética , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Domínio CatalíticoRESUMO
ß-Glucosidases are enzymes with high importance for many industrial processes, catalyzing the last and limiting step of the conversion of lignocellulosic material into fermentable sugars for biofuel production. However, ß-glucosidases are inhibited by high concentrations of the product (glucose), which limits the biofuel production on an industrial scale. For this reason, the structural mechanisms of tolerance to product inhibition have been the target of several studies. In this study, we performed in silico experiments, such as molecular dynamics (MD) simulations, free energy landscape (FEL) estimate, Poisson-Boltzmann surface area (PBSA), and grid inhomogeneous solvation theory (GIST) seeking a better understanding of the glucose tolerance and inhibition mechanisms of a representative GH1 ß-glucosidase and a GH3 one. Our results suggest that the hydrophobic residues Y180, W350, and F349, as well the polar one D238 act in a mechanism for glucose releasing, herein called "slingshot mechanism", dependent also on an allosteric channel (AC). In addition, water activity modulation and the protein loop motions suggest that GH1 ß-Glucosidases present an active site more adapted to glucose withdrawal than GH3, in consonance with the GH1s lower product inhibition. The results presented here provide directions on the understanding of the molecular mechanisms governing inhibition and tolerance to the product in ß-glucosidases and can be useful for the rational design of optimized enzymes for industrial interests.
Assuntos
Glucose/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , beta-Glucosidase/química , Aminoácidos , Domínio Catalítico , Glucose/metabolismo , Cinética , Ligantes , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , beta-Glucosidase/metabolismoRESUMO
Introduction: The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods: Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results: Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion: We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Assuntos
Camelus , Cadeias Pesadas de Imunoglobulinas , Animais , Coelhos , DNA Complementar , Imunoglobulina G , Imunoglobulina ARESUMO
ß-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the ß - 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, ß-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant ß-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 ß-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B's mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αß-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants' structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.Communicated by Ramaswamy H. Sarma.
Assuntos
Celobiose , Mutação Puntual , Biocombustíveis , Glucose , Especificidade por Substrato , beta-Glucosidase/genética , beta-Glucosidase/metabolismoRESUMO
Computational chemistry has always played a key role in anti-viral drug development. The challenges and the quickly rising public interest when a virus is becoming a threat has significantly influenced computational drug discovery. The most obvious example is anti-AIDS research, where HIV protease and reverse transcriptase have triggered enormous efforts in developing and improving computational methods. Methods applied to anti-viral research include (i) ligand-based approaches that rely on known active compounds to extrapolate biological activity, such as machine learning techniques or classical QSAR, (ii) structure-based methods that rely on an experimentally determined 3D structure of the targets, such as molecular docking or molecular dynamics, and (iii) universal approaches that can be applied in a structure- or ligand-based way, such as 3D QSAR or 3D pharmacophore elucidation. In this review we summarize these molecular modeling approaches as they were applied to fight anti-viral diseases and highlight their importance for anti-viral research. We discuss the role of computational chemistry in the development of small molecules as agents against HIV integrase, HIV-1 protease, HIV-1 reverse transcriptase, the influenza virus M2 channel protein, influenza virus neuraminidase, the SARS coronavirus main proteinase and spike protein, thymidine kinases of herpes viruses, hepatitis c virus proteins and other flaviviruses as well as human rhinovirus coat protein and proteases, and other picornaviridae. We highlight how computational approaches have helped in discovering anti-viral activities of natural products and give an overview on polypharmacology approaches that help to optimize drugs against several viruses or help to optimize the metabolic profile of and anti-viral drug.