Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 33732-33740, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859146

RESUMO

Atomic layer deposited Al2O3 films are incorporated into miniature light emitting diodes (mini-LEDs) as an internal moisture barrier layer. The experimental results show that the water vapor transmission rate reaches ≤10-4 g/m2/day when the Al2O3 thickness is ≥40 nm. The mini-LED with a 40 nm-thick Al2O3 layer shows negligible degradation after 1000 h of 85°C/85% relative humidity testing, whereas the device without an Al2O3 layer fails after only 500 h due to delamination occurring at the GaN surface. Current-voltage characteristics of the device without an Al2O3 moisture barrier layer indicate an increase in series resistance and ideality factor. This study provides a simple, light-weighting method to have a satisfactory encapsulation function for miniature LEDs.

2.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241843

RESUMO

The two-step sequential deposition is a commonly used method by researchers for fabricating perovskite solar cells (PSCs) due to its reproducibility and tolerant preparation conditions. However, the less-than-favorable diffusive processes in the preparation process often result in subpar crystalline quality in the perovskite films. In this study, we employed a simple strategy to regulate the crystallization process by lowering the temperature of the organic-cation precursor solutions. By doing so, we minimized interdiffusion processes between the organic cations and pre-deposited lead iodide (PbI2) film under poor crystallization conditions. This allowed for a homogenous perovskite film with improved crystalline orientation when transferred to appropriate environmental conditions for annealing. As a result, a boosted power conversion efficiency (PCE) was achieved in PSCs tested for 0.1 cm2 and 1 cm2, with the former exhibiting a PCE of 24.10% and the latter of 21.56%, compared to control PSCs, which showed a PCE of 22.65% and 20.69%, respectively. Additionally, the strategy increased device stability, with the cells holding 95.8% and 89.4% of the initial efficiency even after 7000 h of aging under nitrogen or 20-30% relative humidity and 25 °C. This study highlights a promising low-temperature-treated (LT-treated) strategy compatible with other PSCs fabrication techniques, adding a new possibility for temperature regulation during crystallization.

3.
Opt Express ; 30(10): 16827-16836, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221517

RESUMO

This study utilized thin p-GaN, indium tin oxide (ITO), and a reflective passivation layer (RPL) to improve the performance of deep ultra-violet light-emitting diodes (DUV-LEDs). RPL reflectors, which comprise HfO2/SiO2 stacks of different thickness to maintain high reflectance, were deposited on the DUV-LEDs with 40 nm-thick p-GaN and 12 nm-thick ITO thin films. Although the thin p-GaN and ITO films affect the operation voltage of DUV-LEDs, the highly reflective RPL structure improved the WPE and light extraction efficiency (LEE) of the DUV-LEDs, yielding the best WPE and LEE of 2.59% and 7.57%, respectively. The junction temperature of DUV-LEDs with thick p-GaN increased linearly with the injection current, while that of DUV-LEDs with thin p-GaN, thin ITO, and RPL was lower than that of the Ref-LED under high injection currents (> 500 mA). This influenced the temperature sensitive coefficients (dV/dT, dLOP/dT, and dWLP/dT). The thermal behavior of DUV-LEDs with p-GaN and ITO layers of different thicknesses with/without the RPL was discussed in detail.

4.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555844

RESUMO

In recent years, the application of (In, Al, Ga)N materials in photovoltaic devices has attracted much attention. Like InGaN, it is a direct band gap material with high absorption at the band edge, suitable for high efficiency photovoltaic devices. Nonetheless, it is important to deposit high-quality GaN material as a foundation. Plasma-enhanced atomic layer deposition (PEALD) combines the advantages of the ALD process with the use of plasma and is often used to deposit thin films with different needs. However, residual oxygen during growth has always been an unavoidable issue affecting the quality of the resulting film, especially in growing gallium nitride (GaN) films. In this study, the NH3-containing plasma was used to capture the oxygen absorbed on the growing surface to improve the quality of GaN films. By diagnosing the plasma, NH2, NH, and H radicals controlled by the plasma power has a strong influence not only on the oxygen content in growing GaN films but also on the growth rate, crystallinity, and surface roughness. The NH and NH2 radicals contribute to the growth of GaN films while the H radicals selectively dissociate Ga-OH bonds on the film surface and etch the grown films. At high plasma power, the GaN film with the lowest Ga-O bond ratio has a saturated growth rate, a better crystallinity, a rougher surface, and a lower bandgap. In addition, the deposition mechanism of GaN thin films prepared with a trimethylgallium metal source and NH3/Ar plasma PEALD involving oxygen participation or not is also discussed in the study.


Assuntos
Amônia , Filmes Cinematográficos , Oxigênio , Plasma
5.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500217

RESUMO

Gallium nitride (GaN) is a wide bandgap semiconductor with remarkable chemical and thermal stability, making it a competitive candidate for a variety of optoelectronic applications. In this study, GaN films are grown using a plasma-enhanced atomic layer deposition (PEALD) with trimethylgallium (TMG) and NH3 plasma. The effect of substrate temperature on growth mechanism and properties of the PEALD GaN films is systematically studied. The experimental results show that the self-limiting surface chemical reactions occur in the substrate temperature range of 250-350 °C. The substrate temperature strongly affects the crystalline structure, which is nearly amorphous at below 250 °C, with (100) as the major phase at below 400 °C, and (002) dominated at higher temperatures. The X-ray photoelectron spectroscopy spectra reveals the unintentional oxygen incorporation into the films in the forms of Ga2O3 and Ga-OH. The amount of Ga-O component decreases, whereas the Ga-Ga component rapidly increases at 400 and 450 °C, due to the decomposition of TMG. The substrate temperature of 350 °C with the highest amount of Ga-N bonds is, therefore, considered the optimum substrate temperature. This study is helpful for improving the quality of PEALD GaN films.


Assuntos
Plasma , Semicondutores , Oxigênio , Espectroscopia Fotoeletrônica
6.
Opt Express ; 29(23): 37835-37844, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808848

RESUMO

In this study, deep ultraviolet light-emitting diodes (DUV-LEDs) with a reflective passivation layer (RPL) were investigated. The RPL consists of HfO2/SiO2 stacks as distributed Bragg reflectors, which are deposited on two DUV-LEDs with different p-GaN thicknesses. The RPL structure improved the external quantum efficiency droops of the DUV-LEDs with thick and thin p-GaN, thereby increasing their light output power by 18.4% and 39.4% under injection current of 500 mA and by 17.9% and 37.9% under injection current of 1000 mA, respectively. The efficiency droops of the DUV-LEDs with and without the RPL with thick p-GaN were 20.1% and 19.1% and with thin p-GaN were 18.0% and 15.6%, respectively. The DUV-LEDs with the RPL presented improved performance. The above results demonstrate the potential for development of the RPLs for DUV-LED applications.

7.
Molecules ; 26(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361592

RESUMO

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.

8.
Molecules ; 26(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063657

RESUMO

In this study, we describe composited perovskite films based on the doping of lead cesium triiodide (CsPbI3) quantum dots (QDs) into methylammonium lead iodide (MAPbI3). CsPbI3 QDs and MAPbI3 were prepared by ligand-assisted re-precipitation and solution mixing, respectively. These films were optimized by oxygen plasma treatment, and the effect of powers from 0 to 80 W on the structural properties of the composited perovskite films is discussed. The experimental results showed that the light-harvesting ability of the films was enhanced at 20 W. The formation of the metastable state (lead(II) oxide and lead tetroxide) was demonstrated by peak differentiation-imitating. A low power enhanced the quality of the films due to the removal of organic impurities, whereas a high power caused surface damage in the films owing to the severe degradation of MAPbI3.

9.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500566

RESUMO

In recent years, the study of organic-inorganic halide perovskite as an optoelectronics material has been a significant line of research, and the power conversion efficiency of solar cells based on these materials has reached 25.5%. However, defects on the surface of the film are still a problem to be solved, and oxygen plasma is one of the ways to passivate surface defects. In order to avoid destroying the methylammonium lead iodide (MAPbI3), the influence of plasma powers on film was investigated and the cesium triiodide (CsPbI3) quantum dots (QDs) were doped into the film. In addition, it was found that oxygen plasma can enhance the mobility and carrier concentration of the MAPbI3 film.

10.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143026

RESUMO

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


Assuntos
Alumínio/química , Membranas Artificiais , Oxigênio/química , Óxido de Zinco/química , Propriedades de Superfície , Difração de Raios X
11.
ACS Appl Mater Interfaces ; 16(24): 31114-31125, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38857487

RESUMO

Albeit the undesirable attributes of NiOx, such as low conductivity, unmanageable defects, and redox reactions occurring at the perovskite/NiOx interface, which impede the progress in inverted perovskite solar cells (i-PSCs), it is the most favorable choice of technology for industrialization of PSCs. In this study, we propose a novel Ni vacancy defect modulate approach to leverage the conformal growth and surface self-limiting reaction characteristics of the atomic layer deposition (ALD)-fabricated NiOx by varying the O2 plasma injection time (tOE) to induce self-doping. Consequently, NiOx thin films with enhanced conductivity, an appropriate Ni3+/Ni2+ ratio, stable surface states, and ultrathinness are realized as hole-transporting layers (HTLs) in p-i-n PSCs. As a result of these improvements, ALD-NiOx-based devices exhibit the highest power conversion efficiency (PCE) of 19.86% and a fill factor (FF) of 81.86%. Notably, the optimal interfacial defects effectively suppressed the severe reaction between the perovskite and NiOx. This suppression is evidenced by the lowest decay rate observed in a harsh environment, lasting for 500 consecutive hours. The proposed approach introduces the possibility of a hierarchical distribution of defects and offers feasibility for the fabrication of large-area, uniform, and high-quality films.

12.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38668184

RESUMO

It is usually difficult to realize high mobility together with a low threshold voltage and good stability for amorphous oxide thin-film transistors (TFTs). In addition, a low fabrication temperature is preferred in terms of enhancing compatibility with the back end of line of the device. In this study, α-IGZO TFTs were prepared by high-power impulse magnetron sputtering (HiPIMS) at room temperature. The channel was prepared under a two-step deposition pressure process to modulate its electrical properties. X-ray photoelectron spectra revealed that the front-channel has a lower Ga content and a higher oxygen vacancy concentration than the back-channel. This process has the advantage of balancing high mobility and a low threshold voltage of the TFT when compared with a conventional homogeneous channel. It also has a simpler fabrication process than that of a dual active layer comprising heterogeneous materials. The HiPIMS process has the advantage of being a low temperature process for oxide TFTs.

13.
ACS Appl Mater Interfaces ; 14(42): 47696-47705, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36227642

RESUMO

Thermoelectric (TE)-based gas sensors have attracted significant attention due to their high selectivity, low power consumption, and minimum maintenance requirements. However, it is challenging to find low-cost, environmentally friendly materials and simple device fabrication processes for large-scale applications. Herein, we report self-powered thermoelectric hydrogen (TEH) sensors based on bismuth sulfide (Bi2S3) fabricated from a low-cost Bi2S3 TE layer and platinum (Pt) catalyst. When working at room temperature, the monomorphic-type TEH sensor obtained an output response signal of 42.2 µV with a response time of 17 s at a 3% hydrogen atmosphere. To further improve device performance, we connected the patterned Bi2S3 films in series to increase the Seebeck coefficient to -897 µV K-1. For comparison, the resulting N tandem-type TEH sensor yielded a distinguished output voltage of 101.4 µV, which was greater than the monomorphic type by a factor of 2.4. Significantly, the response and recovery time of the N-tandem-type TEH sensor to 3% hydrogen were shortened to 14 and 15 s, respectively. This work provides a simple, environmentally friendly, and low-cost strategy for fabricating high-performance TEH sensors by applying low-cost Bi2S3 TE materials.

14.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564219

RESUMO

Amorphous Gallium oxide (Ga2O3) thin films were grown by plasma-enhanced atomic layer deposition using O2 plasma as reactant and trimethylgallium as a gallium source. The growth rate of the Ga2O3 films was about 0.6 Å/cycle and was acquired at a temperature ranging from 80 to 250 °C. The investigation of transmittance and the adsorption edge of Ga2O3 films prepared on sapphire substrates showed that the band gap energy gradually decreases from 5.04 to 4.76 eV with the increasing temperature. X-ray photoelectron spectroscopy (XPS) analysis indicated that all the Ga2O3 thin films showed a good stoichiometric ratio, and the atomic ratio of Ga/O was close to 0.7. According to XPS analysis, the proportion of Ga3+ and lattice oxygen increases with the increase in temperature resulting in denser films. By analyzing the film density from X-ray reflectivity and by a refractive index curve, it was found that the higher temperature, the denser the film. Atomic force microscopic analysis showed that the surface roughness values increased from 0.091 to 0.187 nm with the increasing substrate temperature. X-ray diffraction and transmission electron microscopy investigation showed that Ga2O3 films grown at temperatures from 80 to 200 °C were amorphous, and the Ga2O3 film grown at 250 °C was slightly crystalline with some nanocrystalline structures.

15.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745334

RESUMO

Indium tin oxide (ITO) thin films were prepared by high power impulse magnetron sputtering (HiPIMS) and annealed in hydrogen-containing forming gas to reduce the film resistivity. The film resistivity reduces by nearly an order of magnitude from 5.6 × 10-3 Ω·cm for the as-deposited film to the lowest value of 6.7 × 10-4 Ω·cm after annealed at 700 °C for 40 min. The role of hydrogen (H) in changing the film properties was explored and discussed in a large temperature range (300-800 °C). When annealed at a low temperature of 300-500 °C, the incorporated H atoms occupied the oxygen sites (Ho), acting as shallow donors that contribute to the increase of carrier concentration, leading to the decrease of film resistivity. When annealed at an intermediate temperature of 500-700 °C, the Ho defects are thermally unstable and decay upon annealing, leading to the reduction of carrier concentration. However, the film resistivity keeps decreasing due to the increase in carrier mobility. Meanwhile, some locally distributed metallic clusters formed due to the reduction effect of H2. When annealed at a high temperature of 700-800 °C, the metal oxide film is severely reduced and transforms to gaseous metal hydride, leading to the dramatic reduction of film thickness and carrier mobility at 750 °C and vanish of the film at 800 °C.

16.
ACS Appl Mater Interfaces ; 14(10): 12640-12651, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35239315

RESUMO

A dopant-free polymeric hole selective contact (HSC) layer is ubiquitous for stable perovskite solar cells (PSCs). However, the intrinsic nonwetting nature of the polymeric HSC impedes the uniform spreading of the perovskite precursor solution, generating a terrible buried interface. Here, we dexterously tackle this dilemma from the perspective of dispersive and polar component surface energies of the HSC layer. A novel triarylamine-based HSC material, poly[bis(4-phenyl)(2,4-dimethoxyphenyl)amine] (2MeO-PTAA), was designed by introducing the polar methoxy groups to the para and ortho positions of the dangling benzene. These nonsymmetrically substituted electron-donating methoxy groups enhanced the polar components of surface energy, allowing more tight interfacial contact between the HSC layer and perovskite and facilitating hole extraction. When utilized as the dopant-free HSC layer in inverted PSCs, the 2MeO-PTAA-based device with CH3NH3PbI3 as the absorber exhibited an encouraging power conversion efficiency of 20.23% and a high fill factor of 84.31% with negligible hysteresis. Finally, a revised detailed balance model was used to verify the drastically lessened surface defect-induced recombination loss and shunt resistance loss in 2MeO-PTAA-based devices. This work demonstrates a facile and efficient way to modulate the buried interface and shed light on the direction to further improve the photovoltaic performance of inverted PSCs with other types of perovskites.

17.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014724

RESUMO

The promising functional tin oxide (SnOx) has attracted tremendous attention due to its transparent and conductive properties. The stoichiometric composition of SnOx can be described as common n-type SnO2 and p-type Sn3O4. In this study, the functional SnOx films were prepared successfully by plasma-enhanced atomic layer deposition (PEALD) at different substrate temperatures from 100 to 400 °C. The experimental results involving optical, structural, chemical, and electrical properties and morphologies are discussed. The SnO2 and oxygen-deficient Sn3O4 phases coexisting in PEALD SnOx films were found. The PEALD SnOx films are composed of intrinsic oxygen vacancies with O-Sn4+ bonds and then transformed into a crystalline SnO2 phase with increased substrate temperature, revealing a direct 3.5−4.0 eV band gap and 1.9−2.1 refractive index. Lower (<150 °C) and higher (>300 °C) substrate temperatures can cause precursor condensation and desorption, respectively, resulting in reduced film qualities. The proper composition ratio of O to Sn in PEALD SnOx films near an estimated 1.74 suggests the highest mobility of 12.89 cm2 V−1 s−1 at 300 °C.

18.
Nanomaterials (Basel) ; 12(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364666

RESUMO

Hafnium oxide (HfO2) thin film has remarkable physical and chemical properties, which makes it useful for a variety of applications. In this work, HfO2 films were prepared on silicon through plasma enhanced atomic layer deposition (PEALD) at various substrate temperatures. The growth per cycle, structural, morphology and crystalline properties of HfO2 films were measured by spectroscopic ellipsometer, grazing-incidence X-ray diffraction (GIXRD), X-ray reflectivity (XRR), field-emission scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The substrate temperature dependent electrical properties of PEALD-HfO2 films were obtained by capacitance-voltage and current-voltage measurements. GIXRD patterns and XRR investigations show that increasing the substrate temperature improved the crystallinity and density of HfO2 films. The crystallinity of HfO2 films has a major effect on electrical properties of the films. HfO2 thin film deposited at 300 °C possesses the highest dielectric constant and breakdown electric field.

19.
Materials (Basel) ; 14(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540775

RESUMO

In this study, the effect of radical intensity on the deposition mechanism, optical, and electrical properties of tin oxide (SnO2) thin films is investigated. The SnO2 thin films are prepared by plasma-enhanced atomic layer deposition with different plasma power from 1000 to 3000 W. The experimental results show that plasma contains different amount of argon radicals (Ar*) and oxygen radicals (O*) with the increased power. The three deposition mechanisms are indicated by the variation of Ar* and O* intensities evidenced by optical emission spectroscopy. The adequate intensities of Ar* and O* are obtained by the power of 1500 W, inducing the highest oxygen vacancies (OV) ratio, the narrowest band gap, and the densest film structure. The refractive index and optical loss increase with the plasma power, possibly owing to the increased film density. According to the Hall effect measurement results, the improved plasma power from 1000 to 1500 W enhances the carrier concentration due to the enlargement of OV ratio, while the plasma powers higher than 1500 W further cause the removal of OV and the significant bombardment from Ar*, leading to the increase of resistivity.

20.
Nanomaterials (Basel) ; 11(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920231

RESUMO

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100-150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150-200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225-275 °C. At high substrate temperature (300-350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA