Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioorg Med Chem ; 78: 117130, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542958

RESUMO

PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.


Assuntos
PPAR gama , Neoplasias da Bexiga Urinária , Humanos , PPAR gama/agonistas , Agonismo Inverso de Drogas , Agonistas PPAR-gama , Regulação da Expressão Gênica
2.
Drug Metab Dispos ; 49(1): 53-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148688

RESUMO

Physiologically based pharmacokinetic modeling has become a standard tool to predict drug distribution in early stages of drug discovery; however, this does not currently encompass lysosomal trapping. For basic lipophilic compounds, lysosomal sequestration is known to potentially influence intracellular as well as tissue distribution. The aim of our research was to reliably predict the lysosomal drug content and ultimately integrate this mechanism into pharmacokinetic prediction models. First, we further validated our previously presented method to predict the lysosomal drug content (Schmitt et al., 2019) for a larger set of compounds (n = 41) showing a very good predictivity. Using the lysosomal marker lipid bis(monoacylglycero)phosphate, we estimated the lysosomal volume fraction for all major tissues in the rat, ranging from 0.03% for adipose up to 5.3% for spleen. The pH-driven lysosomal trapping was then estimated and fully integrated into the mechanistic distribution model published by Rodgers et al. (2005) Predictions of Kpu improved for all lysosome-rich tissues. For instance, Kpu increased for nicotine 4-fold (spleen) and 2-fold (lung and kidney) and for quinidine 1.8-fold (brain), although for most other drugs the effects were much less (≤7%). Overall, the effect was strongest for basic compounds with a lower lipophilicity, such as nicotine, for which the unbound volume of distribution at steady-state prediction changed from 1.34 to 1.58 l/kg. For more lipophilic (basic) compounds or those that already show strong interactions with acidic phospholipids, the additional contribution of lysosomal trapping was less pronounced. Nevertheless, lysosomal trapping will also affect intracellular distribution of such compounds. SIGNIFICANCE STATEMENT: The estimation of the lysosomal content in all body tissues facilitated the incorporation of lysosomal sequestration into a general physiologically based pharmacokinetic model, leading to improved predictions as well as elucidating its influence on tissue and subcellular distribution in the rat.


Assuntos
Desenvolvimento de Medicamentos/métodos , Lisossomos , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual/fisiologia , Animais , Lisossomos/química , Lisossomos/efeitos dos fármacos , Lisossomos/fisiologia , Lisossomos/ultraestrutura , Modelos Biológicos , Farmacocinética , Ratos , Solubilidade
3.
Chemistry ; 26(19): 4378-4388, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961028

RESUMO

A short synthetic approach with broad scope to access five- to seven-membered cyclic sulfoximines in only two to three steps from readily available thiophenols is reported. Thus, simple building blocks were converted to complex molecular structures by a sequence of S-alkylation and one-pot sulfoximine formation, followed by intramolecular cyclization. Seventeen structurally diverse cyclic sulfoximines were prepared in high overall yields. In vitro evaluation of these underrepresented, three-dimensional, cyclic sulfoximines with respect to properties relevant to medicinal chemistry did not reveal any intrinsic flaw for application in drug discovery.


Assuntos
Descoberta de Drogas/métodos , Metionina Sulfoximina/síntese química , Alquilação , Química Farmacêutica , Ciclização , Metionina Sulfoximina/química , Estrutura Molecular
4.
Blood ; 130(9): 1114-1124, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28646117

RESUMO

Cyclin-dependent kinase 9 (CDK9), a subunit of the positive transcription elongation factor b (P-TEFb) complex, regulates gene transcription elongation by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). The deregulation of CDK9/P-TEFb has important implications for many cancer types. BAY 1143572 is a novel and highly selective CDK9/P-TEFb inhibitor currently being investigated in phase 1 studies. We evaluated the therapeutic potential of BAY 1143572 in adult T-cell leukemia/lymphoma (ATL). As a result of CDK9 inhibition and subsequent inhibition of phosphorylation at serine 2 of the RNAPII CTD, BAY 1143572 decreased c-Myc and Mcl-1 levels in ATL-derived or human T-cell lymphotropic virus type-1 (HTLV-1)-transformed lines and primary ATL cells tested, leading to their growth inhibition and apoptosis. Median inhibitory concentrations for BAY 1143572 in ATL-derived or HTLV-1-transformed lines (n = 8), primary ATL cells (n = 11), and CD4+ cells from healthy volunteers (n = 5) were 0.535, 0.30, and 0.36 µM, respectively. Next, NOG mice were used as recipients of tumor cells from an ATL patient. BAY 1143572-treated ATL-bearing mice (once daily 12.5 mg/kg oral application) demonstrated significantly decreased ATL cell infiltration of the liver and bone marrow, as well as decreased human soluble interleukin-2 receptor levels in serum (reflecting the ATL tumor burden), compared with untreated mice (n = 8 for both). BAY 1143572-treated ATL-bearing mice demonstrated significantly prolonged survival compared with untreated ATL-bearing mice (n = 7 for both). Collectively, this study indicates that BAY 1143572 showed strong potential as a novel treatment of ATL.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Leucemia-Linfoma de Células T do Adulto/enzimologia , Terapia de Alvo Molecular , Animais , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Quinase 9 Dependente de Ciclina/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Estimativa de Kaplan-Meier , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade
5.
Drug Metab Dispos ; 47(1): 49-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409837

RESUMO

Lysosomal sequestration may affect the pharmacokinetics, efficacy, and safety of new basic lipophilic drug candidates potentially impacting their intracellular concentrations and tissue distribution. It may also be involved in drug-drug interactions, drug resistance, and phospholipidosis. However, currently there are no assays to evaluate the lysosomotropic behavior of compounds in a setting fully meeting the needs of drug discovery. We have, therefore, integrated a set of methods to reliably rank order, quantify, and calculate the extent of lysosomal sequestration in rat hepatocytes. An indirect fluorescence-based assay monitors the displacement of the fluorescence probe LysoTracker Red by test compounds. Using a lysosomal-specific evaluation algorithm allows one to generate IC50 values at lower than previously reported concentrations. The concentration range directly agrees with the concentration dependency of the lysosomal drug content itself directly quantified by liquid chromatography-tandem mass spectrometry and thus permits a quantitative link between the indirect and the direct trapping assay. Furthermore, we have determined the full pH profile and corresponding volume fractions of the endo-/lysosomal system in plated rat hepatocytes, enabling a more accurate in silico prediction of the extent of lysosomal trapping based only on pK a values as input, allowing early predictions even prior to chemical synthesis. The concentration dependency-i.e., the saturability of the trapping-can then be determined by the IC50 values generated in vitro. Thereby, a more quantitative assessment of the susceptibility of basic lipophilic compounds for lysosomal trapping is possible.


Assuntos
Bioensaio/métodos , Descoberta de Drogas/métodos , Hepatócitos/metabolismo , Lisossomos/metabolismo , Preparações Farmacêuticas/análise , Aminas/química , Animais , Células Cultivadas , Simulação por Computador , Hepatócitos/química , Hepatócitos/citologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisossomos/química , Microscopia de Fluorescência , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
6.
Chemistry ; 24(37): 9295-9304, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29726583

RESUMO

An unprecedented set of structurally diverse sulfonimidamides (47 compounds) has been prepared by various N-functionalization reactions of tertiary =NH sulfonimidamide 2 aa. These N-functionalization reactions of model compound 2 aa include arylation, alkylation, trifluoromethylation, cyanation, sulfonylation, alkoxycarbonylation (carbamate formation) and aminocarbonylation (urea formation). Small molecule X-ray analyses of selected N-functionalized products are reported. To gain further insight into the properties of sulfonimidamides relevant to medicinal chemistry, a variety of structurally diverse reaction products were tested in selected in vitro assays. The described N-functionalization reactions provide a short and efficient approach to structurally diverse sulfonimidamides which have been the subject of recent, growing interest in the life sciences.

7.
Handb Exp Pharmacol ; 232: 235-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26330260

RESUMO

The role of pharmacokinetics (PK) in drug discovery is to support the optimisation of the absorption, distribution, metabolism and excretion (ADME) properties of lead compounds with the ultimate goal to attain a clinical candidate which achieves a concentration-time profile in the body that is adequate for the desired efficacy and safety profile. A thorough characterisation of the lead compounds aiming at the identification of the inherent PK liabilities also includes an early generation of PK/PD relationships linking in vitro potency and target exposure/engagement with expression of pharmacological activity (mode-of-action) and efficacy in animal studies. The chapter describes an exposure-centred approach to lead generation, lead optimisation and candidate selection and profiling that focuses on a stepwise generation of an understanding between PK/exposure and PD/efficacy relationships by capturing target exposure or surrogates thereof and cellular mode-of-action readouts in vivo. Once robust PK/PD relationship in animal PD models has been constructed, it is translated to anticipate the pharmacologically active plasma concentrations in patients and the human therapeutic dose and dosing schedule which is also based on the prediction of the PK behaviour in human as described herein. The chapter outlines how the level of confidence in the predictions increases with the level of understanding of both the PK and the PK/PD of the new chemical entities (NCE) in relation to the disease hypothesis and the ability to propose safe and efficacious doses and dosing schedules in responsive patient populations. A sound identification of potential drug metabolism and pharmacokinetics (DMPK)-related development risks allows proposing of an effective de-risking strategy for the progression of the project that is able to reduce uncertainties and to increase the probability of success during preclinical and clinical development.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Animais , Humanos , Modelos Biológicos , Farmacocinética
8.
ACS Med Chem Lett ; 15(10): 1662-1667, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39411532

RESUMO

A subset of phosphodiesterase 3 (PDE3) inhibitors kills cancer cells that express both PDE3A and SLFN12 by inducing a protein-protein interaction between the two, triggering SLFN12 tRNase activity. Following discovery of the prototypical tool compound, DNMDP, an improved compound, BRD9500, was discovered to be potent in cells and active in several tumor models in vivo. More analogs were prepared and tested with the goal of increasing metabolic stability and decreasing PDE3 inhibition while maintaining the cellular activity of BRD9500. This led to the discovery of BAY 2666605, a compound optimized for clinical testing.

9.
J Med Chem ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450890

RESUMO

KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A. Here, we report the discovery of a new acylsulfonamide-benzofuran series as a novel structural class for KAT6A/B inhibition. These compounds were identified through high-throughput screening and subsequently optimized using molecular modeling and cocrystal structure determination. The final tool compound, BAY-184 (29), was successfully validated in an in vivo proof-of-concept study.

10.
Neurooncol Adv ; 6(1): vdae115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166256

RESUMO

Background: Velcrins are molecular glues that kill cells by inducing the formation of a protein complex between the RNase SLFN12 and the phosphodiesterase PDE3A. Formation of the complex activates SLFN12, which cleaves tRNALeu(TAA) and induces apoptosis. Velcrins such as the clinical investigational compound, BAY 2666605, were found to have activity across multiple solid tumor cell lines from the cancer cell line encyclopedia, including glioblastoma cell lines. We therefore aim to characterize velcrins as novel therapeutic agents in glioblastoma. Materials and Methods: PDE3A and SLFN12 expression levels were measured in glioblastoma cell lines, the Cancer Genome Atlas (TCGA) tumor samples, and tumor neurospheres. Velcrin-treated cells were assayed for viability, induction of apoptosis, cell cycle phases, and global changes in translation. Transcriptional profiling of the cells was obtained. Xenograft-harboring mice treated with velcrins were also monitored for survival. Results: We identified several velcrin-sensitive glioblastoma cell lines and 4 velcrin-sensitive glioblastoma patient-derived models. We determined that BAY 2666605 crosses the blood-brain barrier and elicits full tumor regression in an orthotopic xenograft model of GB1 cells. We also determined that the velcrins BAY 2666605 and BRD3800 induce tumor regression in subcutaneous glioblastoma PDX models. Conclusions: Velcrins have antitumor activity in preclinical models of glioblastoma, warranting further investigation as potential therapeutic agents.

11.
Cell Chem Biol ; 31(7): 1247-1263.e16, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537632

RESUMO

This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Proliferação de Células , Ensaios de Triagem em Larga Escala , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Proteínas de Sinalização YAP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Linhagem Celular Tumoral , Fosfoproteínas/metabolismo , Fosfoproteínas/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Descoberta de Drogas , Camundongos Nus , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Fenótipo , Relação Estrutura-Atividade , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
12.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802665

RESUMO

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Assuntos
Transdução de Sinais , Proteases Específicas de Ubiquitina , Regulação da Expressão Gênica , Endopeptidases
13.
J Med Chem ; 65(21): 14843-14863, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36270630

RESUMO

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Assuntos
PPAR gama , PPAR gama/metabolismo , Ligantes
14.
J Med Chem ; 64(15): 11651-11674, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34264057

RESUMO

Selective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group. VIP152 exhibited the best preclinical overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats upon once weekly iv administration. VIP152 has entered clinical trials for the treatment of cancer with promising longterm, durable monotherapy activity in double-hit diffuse large B-cell lymphoma patients.


Assuntos
Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Injeções Intravenosas , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Ratos , Relação Estrutura-Atividade
15.
Cell Oncol (Dordr) ; 44(3): 581-594, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33492659

RESUMO

PURPOSE: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS: We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS: The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Masculino , Transdução de Sinais/efeitos dos fármacos
16.
J Med Chem ; 64(17): 12723-12737, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428039

RESUMO

Eukaryotes have evolved two major pathways to repair potentially lethal DNA double-strand breaks. Homologous recombination represents a precise, DNA-template-based mechanism available during the S and G2 cell cycle phase, whereas non-homologous end joining, which requires DNA-dependent protein kinase (DNA-PK), allows for fast, cell cycle-independent but less accurate DNA repair. Here, we report the discovery of BAY-8400, a novel selective inhibitor of DNA-PK. Starting from a triazoloquinoxaline, which had been identified as a hit from a screen for ataxia telangiectasia and Rad3-related protein (ATR) inhibitors with inhibitory activity against ATR, ATM, and DNA-PK, lead optimization efforts focusing on potency and selectivity led to the discovery of BAY-8400. In in vitro studies, BAY-8400 showed synergistic activity of DNA-PK inhibition with DNA damage-inducing targeted alpha therapy. Combination of PSMA-targeted thorium-227 conjugate BAY 2315497 treatment of human prostate tumor-bearing mice with BAY-8400 oral treatment increased antitumor efficacy, as compared to PSMA-targeted thorium-227 conjugate monotherapy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteína Quinase Ativada por DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Proteína Quinase Ativada por DNA/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Estrutura Molecular , Fosfatidilinositol 3-Quinases/genética , Ratos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Med Chem ; 64(21): 15883-15911, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699202

RESUMO

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Naftiridinas/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
18.
J Med Chem ; 63(21): 12574-12594, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33108181

RESUMO

Despite extensive research on small molecule thrombin inhibitors for oral application in the past decades, only a single double prodrug with very modest oral bioavailability has reached human therapy as a marketed drug. We have undertaken major efforts to identify neutral, non-prodrug inhibitors. Using a holistic analysis of all available internal data, we were able to build computational models and apply these for the selection of a lead series with the highest possibility of achieving oral bioavailability. In our design, we relied on protein structure knowledge to address potency and identified a small window of favorable physicochemical properties to balance absorption and metabolic stability. Protein structure information on the pregnane X receptor helped in overcoming a persistent cytochrome P450 3A4 induction problem. The selected compound series was optimized to a highly potent, neutral, non-prodrug thrombin inhibitor by designing, synthesizing, and testing derivatives. The resulting optimized compound, BAY1217224, has reached first clinical trials, which have confirmed the desired pharmacokinetic properties.


Assuntos
Anticoagulantes/síntese química , Desenho de Fármacos , Trombina/antagonistas & inibidores , Administração Oral , Animais , Anticoagulantes/química , Anticoagulantes/farmacocinética , Anticoagulantes/farmacologia , Benzoxazóis/química , Benzoxazóis/metabolismo , Benzoxazóis/farmacologia , Sítios de Ligação , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Meia-Vida , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacologia , Concentração Inibidora 50 , Masculino , Simulação de Acoplamento Molecular , Oxazolidinonas/química , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Trombina/metabolismo , Ativação Transcricional/efeitos dos fármacos
19.
Mol Cancer Ther ; 19(1): 26-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582533

RESUMO

The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Feminino , Humanos , Camundongos
20.
J Med Chem ; 63(13): 7293-7325, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502336

RESUMO

The ATR kinase plays a key role in the DNA damage response by activating essential signaling pathways of DNA damage repair, especially in response to replication stress. Because DNA damage and replication stress are major sources of genomic instability, selective ATR inhibition has been recognized as a promising new approach in cancer therapy. We now report the identification and preclinical evaluation of the novel, clinical ATR inhibitor BAY 1895344. Starting from quinoline 2 with weak ATR inhibitory activity, lead optimization efforts focusing on potency, selectivity, and oral bioavailability led to the discovery of the potent, highly selective, orally available ATR inhibitor BAY 1895344, which exhibited strong monotherapy efficacy in cancer xenograft models that carry certain DNA damage repair deficiencies. Moreover, combination treatment of BAY 1895344 with certain DNA damage inducing chemotherapy resulted in synergistic antitumor activity. BAY 1895344 is currently under clinical investigation in patients with advanced solid tumors and lymphomas (NCT03188965).


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morfolinas/administração & dosagem , Morfolinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Administração Oral , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Disponibilidade Biológica , Carboplatina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Inibidores do Citocromo P-450 CYP2C8/química , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Reparo do DNA/efeitos dos fármacos , Cães , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Humanos , Camundongos SCID , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/química , Pirazóis/química , Ratos Wistar , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA