Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(1): 101476, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890642

RESUMO

The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.


Assuntos
Proteínas de Bactérias , Ribulose-Bifosfato Carboxilase , Synechococcus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Família Multigênica , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/enzimologia , Synechococcus/genética , Synechococcus/metabolismo , Ativador de Plasminogênio Tecidual
2.
Proc Natl Acad Sci U S A ; 117(1): 381-387, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848241

RESUMO

The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-ß4 loop, pore loop 1, and the presensor 1-ß hairpin (PS1-ßH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Chaperonas Moleculares/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Acidithiobacillus/genética , Acidithiobacillus/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Domínio Catalítico/genética , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Microscopia Eletrônica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/ultraestrutura , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Secundária de Proteína , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/ultraestrutura
3.
Biochim Biophys Acta ; 1848(10 Pt A): 2244-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26072288

RESUMO

Non-structural (NS) proteins of dengue virus (DENV) are important for viral replication. There are four membrane proteins that are coded by viral genome. NS2B was shown to be one of the membrane proteins and its main function was confirmed to regulate viral protease activity. Its membrane topology is still not known because only few studies have been conducted to understand its structure. Here we report the determination of membrane topology of NS2B from DENV serotype 4 using NMR spectroscopy. NS2B of DENV4 was expressed and purified in detergent micelles. The secondary structure of NS2B was first defined based on backbone chemical resonance assignment. Four helices were identified in NS2B. The membrane topology of NS2B was defined based on relaxation analysis and paramagnetic relaxation enhancement experiments. The last three helices were shown to be more stable than the first helix. The NS3 protease cofactor region between α2 and α3 is highly dynamic. Our results will be useful for further structural and functional analysis of NS2B.


Assuntos
Membrana Celular/química , Membrana Celular/ultraestrutura , Vírus da Dengue/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/ultraestrutura , Sequência de Aminoácidos , Vírus da Dengue/ultraestrutura , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
4.
Protein Expr Purif ; 121: 141-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26849963

RESUMO

Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease.


Assuntos
Vírus da Dengue/enzimologia , Dengue/enzimologia , Detergentes/química , Serina Endopeptidases/química , Dengue/virologia , Vírus da Dengue/patogenicidade , Descoberta de Drogas , Escherichia coli/genética , Cinética , Serina Endopeptidases/isolamento & purificação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/isolamento & purificação
5.
Sci Rep ; 6: 19522, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26776682

RESUMO

Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer's disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Secretases da Proteína Precursora do Amiloide/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Micelas , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA