Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237141

RESUMO

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
2.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38774451

RESUMO

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
3.
J Intern Med ; 292(6): 925-940, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35934913

RESUMO

BACKGROUND: Treatment of newly diagnosed acute myeloid leukaemia (AML) is based on combination chemotherapy with cytarabine (ara-C) and anthracyclines. Five-year overall survival is below 30%, which has partly been attributed to cytarabine resistance. Preclinical data suggest that the addition of hydroxyurea potentiates cytarabine efficacy by increasing ara-C triphosphate (ara-CTP) levels through targeted inhibition of SAMHD1. OBJECTIVES: In this phase 1 trial, we evaluated the feasibility, safety and efficacy of the addition of hydroxyurea to standard chemotherapy with cytarabine/daunorubicin in newly diagnosed AML patients. METHODS: Nine patients were enrolled and received at least two courses of ara-C (1 g/m2 /2 h b.i.d. d1-5, i.e., a total of 10 g/m2 per course), hydroxyurea (1-2 g d1-5) and daunorubicin (60 mg/m2 d1-3). The primary endpoint was safety; secondary endpoints were complete remission rate and measurable residual disease (MRD). Additionally, pharmacokinetic studies of ara-CTP and ex vivo drug sensitivity assays were performed. RESULTS: The most common grade 3-4 toxicity was febrile neutropenia (100%). No unexpected toxicities were observed. Pharmacokinetic analyses showed a significant increase in median ara-CTP levels (1.5-fold; p = 0.04) in patients receiving doses of 1 g hydroxyurea. Ex vivo, diagnostic leukaemic bone marrow blasts from study patients were significantly sensitised to ara-C by a median factor of 2.1 (p = 0.0047). All nine patients (100%) achieved complete remission, and all eight (100%) with validated MRD measurements (flow cytometry or real-time quantitative polymerase chain reaction [RT-qPCR]) had an MRD level <0.1% after two cycles of chemotherapy. Treatment was well-tolerated, and median time to neutrophil recovery >1.0 × 109 /L and to platelet recovery >50 × 109 /L after the start of cycle 1 was 19 days and 22 days, respectively. Six of nine patients underwent allogeneic haematopoietic stem-cell transplantation (allo-HSCT). With a median follow-up of 18.0 (range 14.9-20.5) months, one patient with adverse risk not fit for HSCT experienced a relapse after 11.9 months but is now in second complete remission. CONCLUSION: Targeted inhibition of SAMHD1 by the addition of hydroxyurea to conventional AML therapy is safe and appears efficacious within the limitations of the small phase 1 patient cohort. These results need to be corroborated in a larger study.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/uso terapêutico , Citarabina/farmacologia , Hidroxiureia/uso terapêutico , Arabinofuranosilcitosina Trifosfato/uso terapêutico , Proteína 1 com Domínio SAM e Domínio HD , Temperatura Alta , Protocolos de Quimioterapia Combinada Antineoplásica , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/tratamento farmacológico , Daunorrubicina/uso terapêutico
4.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961800

RESUMO

Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Due to micrometastatic spread, radical surgery alone rarely results in cure. Introduction of combination chemotherapy in the 1970s, however, dramatically increased overall survival rates from 20% to approximately 70%. Unfortunately, large clinical trials aiming to intensify treatment in the past decades have failed to achieve higher cure rates. In this review, we revisit how the heterogenous nature of osteosarcoma as well as acquired and intrinsic resistance to chemotherapy can account for stagnation in therapy improvement. We summarise current osteosarcoma treatment strategies focusing on molecular determinants of treatment susceptibility and resistance. Understanding therapy susceptibility and resistance provides a basis for rational therapy betterment for both identifying patients that might be cured with less toxic interventions and targeting resistance mechanisms to sensitise resistant osteosarcoma to conventional therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas , Resistencia a Medicamentos Antineoplásicos/genética , Osteossarcoma , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Taxa de Sobrevida
5.
PLoS Genet ; 10(10): e1004680, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329383

RESUMO

The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Quebras de DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Recombinação Genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Coesinas
6.
PLoS Genet ; 9(11): e1003898, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244180

RESUMO

Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.


Assuntos
Proteínas de Ciclo Celular/genética , Endodesoxirribonucleases/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Segregação de Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Endodesoxirribonucleases/metabolismo , Camundongos , Mitose/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Recombinação Genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã
7.
Mol Syst Biol ; 9: 692, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084807

RESUMO

Genes with common profiles of the presence and absence in disparate genomes tend to function in the same pathway. By mapping all human genes into about 1000 clusters of genes with similar patterns of conservation across eukaryotic phylogeny, we determined that sets of genes associated with particular diseases have similar phylogenetic profiles. By focusing on those human phylogenetic gene clusters that significantly overlap some of the thousands of human gene sets defined by their coexpression or annotation to pathways or other molecular attributes, we reveal the evolutionary map that connects molecular pathways and human diseases. The other genes in the phylogenetic clusters enriched for particular known disease genes or molecular pathways identify candidate genes for roles in those same disorders and pathways. Focusing on proteins coevolved with the microphthalmia-associated transcription factor (MITF), we identified the Notch pathway suppressor of hairless (RBP-Jk/SuH) transcription factor, and showed that RBP-Jk functions as an MITF cofactor.


Assuntos
Evolução Molecular , Genoma , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Fator de Transcrição Associado à Microftalmia/genética , Microftalmia/genética , Filogenia , Algoritmos , Sequência de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Linhagem Celular Tumoral , Mapeamento Cromossômico , Bases de Dados Genéticas , Fungos/genética , Fungos/metabolismo , Redes Reguladoras de Genes , Loci Gênicos , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/classificação , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Redes e Vias Metabólicas , Fator de Transcrição Associado à Microftalmia/classificação , Fator de Transcrição Associado à Microftalmia/metabolismo , Microftalmia/metabolismo , Microftalmia/patologia , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Immun Inflamm Dis ; 12(1): e1162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270326

RESUMO

BACKGROUND: Asthma is the most common chronic disease in children with an increasing prevalence. Its development is caused by genetic and environmental factors and allergic sensitization is a known trigger. Dog allergens affect up to 30% of all children and dog dander-sensitized children show increased expression of cystatin-1 (CST1) and eotaxin-3 (CCL26) in nasal epithelium. The aim of our study was to investigate the functional mechanism of CST1 and CCL26 in the alveolar basal epithelial cell line A549. METHODS: A549 cells were transfected with individual overexpression vectors for CST1 and CCL26 and RNA sequencing was performed to examine the transcriptomics. edgeR was used to identify differentially expressed genes (= DEG, |log2 FC | ≥ 2, FDR < 0.01). The protein expression levels of A549 cells overexpressing CST1 and CCL26 were analyzed using the Target 96 inflammation panel from OLINK (antibody-mediated proximity extension-based assay; OLINK Proteomics). Differentially expressed proteins were considered with a |log2 FC| ≥ 1, p < .05. RESULTS: The overexpression of CST1 resulted in a total of 27 DEG (1 upregulated and 26 downregulated) and the overexpression of CCL26 in a total of 137 DEG (0 upregulated and 137 downregulated). The gene ontology enrichment analysis showed a significant downregulation of type I and III interferon signaling pathway genes as well as interferon-stimulated genes. At the protein level, overexpression of CST1 induced a significantly increased expression of CCL3, whereas CCL26 overexpression led to increased expression of HGF, and a decrease of CXCL11, CCL20, CCL3 and CXCL10. CONCLUSION: Our results indicate that an overexpression of CST1 and CCL26 cause a downregulation of interferon related genes and inflammatory proteins. It might cause a higher disease susceptibility, mainly for allergic asthma, as CCL26 is an agonist for CCR-3-carrying cells, such as eosinophils and Th2 lymphocytes, mostly active in allergic asthma.


Assuntos
Asma , Quimiocina CCL26 , Cistatinas Salivares , Animais , Cães , Humanos , Células A549 , Asma/genética , Quimiocina CCL26/genética , Interferons , Cistatinas Salivares/genética
9.
Sci Rep ; 6: 28355, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345455

RESUMO

The CCCTC-binding factor (CTCF) is an architectural protein that governs chromatin organization and gene expression in somatic cells. Here, we show that CTCF regulates chromatin compaction necessary for packaging of the paternal genome into mature sperm. Inactivation of Ctcf in male germ cells in mice (Ctcf-cKO mice) resulted in impaired spermiogenesis and infertility. Residual spermatozoa in Ctcf-cKO mice displayed abnormal head morphology, aberrant chromatin compaction, impaired protamine 1 incorporation into chromatin and accelerated histone depletion. Thus, CTCF regulates chromatin organization during spermiogenesis, contributing to the functional organization of mature sperm.


Assuntos
Fator de Ligação a CCCTC/genética , Fertilidade , Mitocôndrias/genética , Espermatogênese , Animais , Montagem e Desmontagem da Cromatina , Técnicas de Inativação de Genes , Masculino , Camundongos , Protaminas/metabolismo , Espermatozoides/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA