Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Brain Commun ; 6(3): fcae146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863574

RESUMO

Idiopathic Parkinson's disease is determined by a combination of genetic and environmental factors. Recently, the first genome-wide association study on short-tandem repeats in Parkinson's disease reported on eight suggestive short-tandem repeat-based risk loci (α = 5.3 × 10-6), of which four were novel, i.e. they had not been implicated in Parkinson's disease risk by genome-wide association analyses of single-nucleotide polymorphisms before. Here, we tested these eight candidate short-tandem repeats in a large, independent Parkinson's disease case-control dataset (n = 4757). Furthermore, we combined the results from both studies by meta-analysis resulting in the largest Parkinson's disease genome-wide association study of short-tandem repeats to date (n = 43 844). Lastly, we investigated whether leading short-tandem repeat risk variants exert functional effects on gene expression regulation based on methylation quantitative trait locus data in human 'post-mortem' brain (n = 142). None of the eight previously reported short-tandem repeats were significantly associated with Parkinson's disease in our independent dataset after multiple testing correction (α = 6.25 × 10-3). However, we observed modest support for short-tandem repeats near CCAR2 and NCOR1 in the updated meta-analyses of all available data. While the genome-wide meta-analysis did not reveal additional study-wide significant (α = 6.3 × 10-7) short-tandem repeat signals, we identified seven novel suggestive Parkinson's disease short-tandem repeat risk loci (α = 5.3 × 10-6). Of these, especially a short-tandem repeat near MEIOSIN showed consistent evidence for association across datasets. CCAR2, NCOR1 and one novel suggestive locus identified here (LINC01012) emerged from colocalization analyses showing evidence for a shared causal short-tandem repeat variant affecting both Parkinson's disease risk and cis DNA methylation in brain. Larger studies, ideally using short-tandem repeats called from whole-sequencing data, are needed to more fully investigate their role in Parkinson's disease.

3.
Neurology ; 102(8): e209201, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38513162

RESUMO

BACKGROUND AND OBJECTIVES: Inverse associations between caffeine intake and Parkinson disease (PD) have been frequently implicated in human studies. However, no studies have quantified biomarkers of caffeine intake years before PD onset and investigated whether and which caffeine metabolites are related to PD. METHODS: Associations between self-reported total coffee consumption and future PD risk were examined in the EPIC4PD study, a prospective population-based cohort including 6 European countries. Cases with PD were identified through medical records and reviewed by expert neurologists. Hazard ratios (HRs) and 95% CIs for coffee consumption and PD incidence were estimated using Cox proportional hazards models. A case-control study nested within the EPIC4PD was conducted, recruiting cases with incident PD and matching each case with a control by age, sex, study center, and fasting status at blood collection. Caffeine metabolites were quantified by high-resolution mass spectrometry in baseline collected plasma samples. Using conditional logistic regression models, odds ratios (ORs) and 95% CIs were estimated for caffeine metabolites and PD risk. RESULTS: In the EPIC4PD cohort (comprising 184,024 individuals), the multivariable-adjusted HR comparing the highest coffee intake with nonconsumers was 0.63 (95% CI 0.46-0.88, p = 0.006). In the nested case-control study, which included 351 cases with incident PD and 351 matched controls, prediagnostic caffeine and its primary metabolites, paraxanthine and theophylline, were inversely associated with PD risk. The ORs were 0.80 (95% CI 0.67-0.95, p = 0.009), 0.82 (95% CI 0.69-0.96, p = 0.015), and 0.78 (95% CI 0.65-0.93, p = 0.005), respectively. Adjusting for smoking and alcohol consumption did not substantially change these results. DISCUSSION: This study demonstrates that the neuroprotection of coffee on PD is attributed to caffeine and its metabolites by detailed quantification of plasma caffeine and its metabolites years before diagnosis.


Assuntos
Cafeína , Doença de Parkinson , Humanos , Cafeína/metabolismo , Café , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Estudos de Casos e Controles , Estudos Prospectivos , Fatores de Risco
4.
medRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196633

RESUMO

DNA methylation (DNAm) is an epigenetic mark with essential roles in disease development and predisposition. Here, we created genome-wide maps of methylation quantitative trait loci (meQTL) in three peripheral tissues and used Mendelian randomization (MR) analyses to assess the potential causal relationships between DNAm and risk for two common neurodegenerative disorders, i.e. Alzheimer's disease (AD) and Parkinson's disease (PD). Genome-wide single nucleotide polymorphism (SNP; ~5.5M sites) and DNAm (~850K CpG sites) data were generated from whole blood (n=1,058), buccal (n=1,527) and saliva (n=837) specimens. We identified between 11 and 15 million genome-wide significant (p<10-14) SNP-CpG associations in each tissue. Combining these meQTL GWAS results with recent AD/PD GWAS summary statistics by MR strongly suggests that the previously described associations between PSMC3, PICALM, and TSPAN14 and AD may be founded on differential DNAm in or near these genes. In addition, there is strong, albeit less unequivocal, support for causal links between DNAm at PRDM7 in AD as well as at KANSL1/MAPT in AD and PD. Our study adds valuable insights on AD/PD pathogenesis by combining two high-resolution "omics" domains, and the meQTL data shared along with this publication will allow like-minded analyses in other diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA