Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chem Rev ; 122(6): 5476-5518, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34982536

RESUMO

Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.


Assuntos
Polímeros , Polimerização , Polímeros/química
2.
J Am Chem Soc ; 145(22): 12293-12304, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204458

RESUMO

Recent mechanistic studies of dual photoredox/Ni-catalyzed, light-driven cross-coupling reactions have found that the photocatalyst (PC) operates through either reductive quenching or energy transfer cycles. To date, reports invoking oxidative quenching cycles are comparatively rare and direct observation of such a quenching event has not been reported. However, when PCs with highly reducing excited states are used (e.g., Ir(ppy)3), photoreduction of Ni(II) to Ni(I) is thermodynamically feasible. Recently, a unified reaction system using Ir(ppy)3 was developed for forming C-O, C-N, and C-S bonds under the same conditions, a prospect that is challenging with PCs that can photooxidize these nucleophiles. Herein, in a detailed mechanistic study of this system, we observe oxidative quenching of the PC (Ir(ppy)3 or a phenoxazine) via nanosecond transient absorption spectroscopy. Speciation studies support that a mixture of Ni-bipyridine complexes forms under the reaction conditions, and the rate constant for photoreduction increases when more than one ligand is bound. Oxidative addition of an aryl iodide was observed indirectly via oxidation of the resulting iodide by Ir(IV)(ppy)3. Intriguingly, the persistence of the Ir(IV)/Ni(I) ion pair formed in the oxidative quenching step was found to be necessary to simulate the observed kinetics. Both bromide and iodide anions were found to reduce the oxidized form of the PC back to its neutral state. These mechanistic insights inspired the addition of a chloride salt additive, which was found to alter Ni speciation, leading to a 36-fold increase in the initial turnover frequency, enabling the coupling of aryl chlorides.

3.
J Am Chem Soc ; 142(31): 13573-13581, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662645

RESUMO

The Birch reduction is a powerful synthetic methodology that uses solvated electrons to convert inert arenes to 1,4-cyclohexadienes-valuable intermediates for building molecular complexity. Birch reductions traditionally employ alkali metals dissolved in ammonia to produce a solvated electron for the reduction of unactivated arenes such as benzene (Ered < -3.42 V vs SCE). Photoredox catalysts have been gaining popularity in highly reducing applications, but none have been reported to demonstrate reduction potentials powerful enough to reduce benzene. Here, we introduce benzo[ghi]perylene imides as new organic photoredox catalysts for Birch reductions performed at ambient temperature and driven by visible light from commercially available LEDs. Using low catalyst loadings (<1 mol percent), benzene and other functionalized arenes were selectively transformed to 1,4-cyclohexadienes in moderate to good yields in a completely metal-free reaction. Mechanistic studies support that this unprecedented visible-light-induced reactivity is enabled by the ability of the organic photoredox catalyst to harness the energy from two visible-light photons to affect a single, high-energy chemical transformation.


Assuntos
Derivados de Benzeno/química , Cicloexenos/química , Imidas/química , Luz , Perileno/análogos & derivados , Catálise , Estrutura Molecular , Oxirredução , Perileno/química , Processos Fotoquímicos
4.
Angew Chem Int Ed Engl ; 59(8): 3209-3217, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31773858

RESUMO

Development of photocatalysts (PCs) with diverse properties has been essential in the advancement of organocatalyzed atom transfer radical polymerization (O-ATRP). Dimethyl dihydroacridines are presented here as a new family of organic PCs, for the first time enabling controlled polymerization of challenging acrylate monomers by O-ATRP. Structure-property relationships for seven PCs are established, demonstrating tunable photochemical and electrochemical properties, and accessing a strongly oxidizing 2 PC.+ intermediate for efficient deactivation. In O-ATRP, the combination of PC, implementation of continuous-flow reactors, and promotion of deactivation through addition of LiBr are critical to producing well-defined acrylate polymers with dispersities as low as 1.12. The utility of this approach is established through demonstration of the oxygen-tolerance of the system and application to diverse acrylate monomers, including the synthesis of well-defined di- and triblock copolymers.

5.
J Am Chem Soc ; 141(49): 19479-19486, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714761

RESUMO

Dual catalytic light-driven cross-coupling methodologies utilizing a Ni(II) salt with a photocatalyst (PC) have emerged as promising methodologies to forge aryl C-N bonds under mild conditions. The recent discovery that the PC can be omitted and the Ni(II) complex directly photoexcited suggests that the PC may perform energy transfer (EnT) to the Ni(II) complex, a mechanistic possibility that has recently been proposed in other systems across dual Ni photocatalysis. Here, we report the first studies in this field capable of distinguishing EnT from electron transfer (ET), and the results are consistent with Förster-type EnT from the excited state [Ru(bpy)3]Cl2 PC to Ni-amine complexes. The structure and speciation of Ni-amine complexes that are the proposed EnT acceptors were elucidated by crystallography and spectroscopic binding studies. With the acceptors known, quantitative Förster theory was utilized to predict the ratio of quenching rate constants upon changing the PC, enabling selection of an organic phenoxazine PC that proved to be more effective in catalyzing C-N cross-coupling reactions with a diverse selection of amines and aryl halides.


Assuntos
Aminas/química , Carbono/química , Complexos de Coordenação/química , Reagentes de Ligações Cruzadas/química , Luz , Níquel/química , Nitrogênio/química , Catálise , Transferência de Energia , Estrutura Molecular
6.
J Am Chem Soc ; 141(33): 13268-13277, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31356063

RESUMO

Although radical polymerizations are among the most prevalent methodologies for the synthesis of polymers with diverse compositions and properties, the intrinsic reactivity and selectivity of radical addition challenge the ability to impart control over the polymerization propagation and produce polymers with defined microstructure. Vinylcyclopropanes (VCPs) can be polymerized through radical ring-opening polymerization to produce polymers possessing linear (l) or cyclic (c) repeat units, providing the opportunity to control polymer structure and modify the polymer properties. Herein, we report the first organocatalyzed photoredox radical ring-opening polymerization of a variety of functionalized VCP monomers, where high monomer conversions and spatial and temporal control were achieved to produce poly(VCPs) with predictable molecular weight and low dispersity. Through manipulating polymerization concentration and temperature, tunable l or c content was realized, allowing further investigation of thermal and viscoelastic materials properties associated with these two distinct compositions. Unexpectedly, the photoredox catalysis enables a postpolymerization modification that converts l content into the c content. Combined experimental and computational studies suggested an intramolecular radical cyclization pathway, where cyclopentane and cyclohexane repeat units are likely formed.


Assuntos
Ciclopropanos/química , Compostos de Vinila/química , Catálise , Ciclização , Ciclopropanos/síntese química , Luz , Oxirredução , Polimerização , Compostos de Vinila/síntese química
7.
J Am Chem Soc ; 141(1): 272-280, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30477302

RESUMO

We report a novel metal-free chemical reduction of CO2 by a recyclable benzimidazole-based organo-hydride, whose choice was guided by quantum chemical calculations. Notably, benzimidazole-based hydride donors rival the hydride-donating abilities of noble-metal-based hydrides such as [Ru(tpy)(bpy)H]+ and [Pt(depe)2H]+. Chemical CO2 reduction to the formate anion (HCOO-) was carried out in the absence of biological enzymes, a sacrificial Lewis acid, or a base to activate the substrate or reductant. 13CO2 experiments confirmed the formation of H13COO- by CO2 reduction with the formate product characterized by 1H NMR and 13C NMR spectroscopy and ESI-MS. The highest formate yield of 66% was obtained in the presence of potassium tetrafluoroborate under mild conditions. The likely role of exogenous salt additives in this reaction is to stabilize and shift the equilibrium toward the ionic products. After CO2 reduction, the benzimidazole-based hydride donor was quantitatively oxidized to its aromatic benzimidazolium cation, establishing its recyclability. In addition, we electrochemically reduced the benzimidazolium cation to its organo-hydride form in quantitative yield, demonstrating its potential for electrocatalytic CO2 reduction. These results serve as a proof of concept for the electrocatalytic reduction of CO2 by sustainable, recyclable, and metal-free organo-hydrides.


Assuntos
Benzimidazóis/química , Dióxido de Carbono/química , Formiatos/química , Di-Hidropiridinas/química , Eletroquímica , Modelos Moleculares , Conformação Molecular , Sais/química , Solventes/química
8.
Aldrichimica Acta ; 52(1): 7-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839678

RESUMO

The application of photoredox catalysis to atom-transfer radical polymerization (ATRP) has resulted in the development of strongly reducing organic photoredox catalysts (PCs) that are some of the most reducing catalysts known. The objectives of this review are to highlight these PCs with regard to their development and applications in polymer and organic synthesis, as well illuminate aspects of these PCs that remain to be studied further.

9.
J Am Chem Soc ; 140(40): 12829-12835, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216713

RESUMO

Ethynylbenziodoxol(on)es (EBXs) have been widely used in organic synthesis as electrophilic alkyne-transfer reagents involving carbon- and heteroatom-based nucleophiles. However, potential reactions of EBXs with phenols remain uninvestigated. Here, we present the formation of ( Z)-2-iodovinyl phenyl ethers with excellent regio- and stereoselectivity through the reactivity between EBXs and phenols driven by visible light. We propose that this light-activated transformation proceeds through electron donor-acceptor complexes to enable new reactivity beyond existing mechanisms for alkynylation of carbon- and heteroatom-based nucleophiles. This operationally robust process was employed for the synthesis of diverse ( Z)-2-iodovinyl phenyl ethers through irradiating a solution containing a phenyl-EBX, a phenol, and the base Cs2CO3 with a commercially available blue LED at room temperature. The ( Z)-2-iodovinyl phenyl ether products can be further stereospecifically functionalized to form trisubstituted alkenes, demonstrating the potential of these products en route to chemical complexity.


Assuntos
Iodobenzenos/química , Fenóis/química , Éteres Fenílicos/síntese química , Compostos de Vinila/síntese química , Técnicas de Química Sintética , Halogenação , Iodobenzenos/síntese química , Luz , Modelos Moleculares , Fenóis/síntese química , Éteres Fenílicos/química , Compostos de Vinila/química
10.
J Am Chem Soc ; 140(24): 7667-7673, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29787252

RESUMO

C-N cross-coupling is an important class of reactions with far-reaching impacts across chemistry, materials science, biology, and medicine. Transition metal complexes can elegantly orchestrate diverse aminations but typically require demanding reaction conditions, precious metal catalysts, or oxygen-sensitive procedures. Here, we introduce a mild nickel-catalyzed C-N cross-coupling methodology that operates at room temperature using an inexpensive nickel source (NiBr2·3H2O), is oxygen tolerant, and proceeds through direct irradiation of the nickel-amine complex. This operationally robust process was employed for the synthesis of diverse C-N-coupled products (40 examples) by irradiating a solution containing an amine, an aryl halide, and a catalytic amount of NiBr2·3H2O with a commercially available 365 nm LED at room temperature without added photoredox catalyst and the amine substrate serving additional roles as the ligands and base. Density functional theory calculations and kinetic isotope effect experiments were performed to elucidate the observed C-N cross-coupling reactivity.


Assuntos
Aminas/síntese química , Complexos de Coordenação/efeitos da radiação , Níquel/química , Aminação , Aminas/química , Aminas/efeitos da radiação , Catálise , Raios Ultravioleta
11.
J Am Chem Soc ; 140(51): 17830-17834, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525556

RESUMO

Using a phenoxazine-based organic photosensitizer and an iron porphyrin molecular catalyst, we demonstrated photochemical reduction of CO2 to CO and CH4 with turnover numbers (TONs) of 149 and 29, respectively, under visible-light irradiation (λ > 435 nm) with a tertiary amine as sacrificial electron donor. This work is the first example of a molecular system using an earth-abundant metal catalyst and an organic dye to effect complete 8e-/8H+ reduction of CO2 to CH4, as opposed to typical 2e-/2H+ products of CO or formic acid. The catalytic system continuously produced methane even after prolonged irradiation up to 4 days. Using CO as the feedstock, the same reactive system was able to produce CH4 with 85% selectivity, 80 TON and a quantum yield of 0.47%. The redox properties of the organic photosensitizer and acidity of the proton source were shown to play a key role in driving the 8e-/8H+ processes.

12.
J Am Chem Soc ; 140(15): 5088-5101, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29513533

RESUMO

Through the study of structure-property relationships using a combination of experimental and computational analyses, a number of phenoxazine derivatives have been developed as visible light absorbing, organic photoredox catalysts (PCs) with excited state reduction potentials rivaling those of highly reducing transition metal PCs. Time-dependent density functional theory (TD-DFT) computational modeling of the photoexcitation of N-aryl and core modified phenoxazines guided the design of PCs with absorption profiles in the visible regime. In accordance with our previous work with N, N-diaryl dihydrophenazines, characterization of noncore modified N-aryl phenoxazines in the excited state demonstrated that the nature of the N-aryl substituent dictates the ability of the PC to access a charge transfer excited state. However, our current analysis of core modified phenoxazines revealed that these molecules can access a different type of CT excited state which we posit involves a core substituent as the electron acceptor. Modification of the core of phenoxazine derivatives with electron-donating and electron-withdrawing substituents was used to alter triplet energies, excited state reduction potentials, and oxidation potentials of the phenoxazine derivatives. The catalytic activity of these molecules was explored using organocatalyzed atom transfer radical polymerization (O-ATRP) for the synthesis of poly(methyl methacrylate) (PMMA) using white light irradiation. All of the derivatives were determined to be suitable PCs for O-ATRP as indicated by a linear growth of polymer molecular weight as a function of monomer conversion and the ability to synthesize PMMA with moderate to low dispersity (dispersity less than or equal to 1.5) and initiator efficiencies typically greater than 70% at high conversions. However, only PCs that exhibit strong absorption of visible light and strong triplet excited state reduction potentials maintain control over the polymerization during the entire course of the reaction. The structure-property relationships established here will enable the application of these organic PCs for O-ATRP and other photoredox-catalyzed small molecule and polymer syntheses.


Assuntos
Oxazinas/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Polimetil Metacrilato/síntese química , Polimetil Metacrilato/química , Teoria Quântica , Relação Estrutura-Atividade
13.
J Am Chem Soc ; 140(42): 13594-13598, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30351134

RESUMO

The synthesis of thiolactone monomers that mimic natural nucleosides and engage in robust ring opening polymerizations (ROP) is herein described. As each repeat unit contains a thioester functional group, dynamic rearrangement of the polymer is feasible via thiol-thioester exchange, demonstrated here by depolymerization of the polymers and coalescing of two polymers of different molecular weight or chemical composition. This approach constitutes the first step toward a platform that enables for the routine synthesis of sequence controlled polymers via dynamic template directed synthesis.


Assuntos
DNA/química , Lactonas/química , Polimerização , Polímeros/química , Compostos de Sulfidrila/química , DNA/síntese química , Lactonas/síntese química , Modelos Moleculares , Polímeros/síntese química , Compostos de Sulfidrila/síntese química
15.
J Am Chem Soc ; 139(39): 13616-13619, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28910097

RESUMO

Disclosed is a mild, scalable, visible-light-promoted cross-coupling reaction between thiols and aryl halides for the construction of C-S bonds in the absence of both transition metal and photoredox catalysts. The scope of aryl halides and thiol partners includes over 60 examples and therefore provides an entry point into various aryl thioether building blocks of pharmaceutical interest. Furthermore, to demonstrate its utility, this C-S coupling protocol was applied in drug synthesis and late-stage modifications of active pharmaceutical ingredients. UV-vis spectroscopy and time-dependent density functional theory calculations suggest that visible-light-promoted intermolecular charge transfer within the thiolate-aryl halide electron donor-acceptor complex permits the reactivity in the absence of catalyst.


Assuntos
Hidrocarbonetos Halogenados/química , Luz , Compostos de Sulfidrila/química , Elétrons , Estrutura Molecular , Teoria Quântica , Espectrofotometria Ultravioleta
16.
J Am Chem Soc ; 139(1): 348-355, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973788

RESUMO

Photoexcited intramolecular charge transfer (CT) states in N,N-diaryl dihydrophenazine photoredox catalysts are accessed through catalyst design and investigated through combined experimental studies and density functional theory (DFT) calculations. These CT states are reminiscent of the metal to ligand charge transfer (MLCT) states of ruthenium and iridium polypyridyl complexes. For cases where the polar CT state is the lowest energy excited state, we observe its population through significant solvatochromic shifts in emission wavelength across the visible spectrum by varying solvent polarity. We propose the importance of accessing CT states for photoredox catalysis of atom transfer radical polymerization lies in their ability to minimize fluorescence while enhancing electron transfer rates between the photoexcited photoredox catalyst and the substrate. Additionally, solvent polarity influences the deactivation pathway, greatly affecting the strength of ion pairing between the oxidized photocatalyst and the bromide anion and thus the ability to realize a controlled radical polymerization. Greater understanding of these photoredox catalysts with respect to CT and ion pairing enables their application toward the polymerization of methyl methacrylate for the synthesis of polymers with precisely tunable molecular weights and dispersities typically lower than 1.10.


Assuntos
Compostos Organometálicos/química , Fenazinas/química , Polímeros/síntese química , Catálise , Transporte de Elétrons , Fluorescência , Radicais Livres/síntese química , Radicais Livres/química , Íons/química , Oxirredução , Processos Fotoquímicos , Polimerização , Polímeros/química , Teoria Quântica
17.
Chemistry ; 23(46): 10962-10968, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28654171

RESUMO

Photoredox catalysis is a versatile approach for the construction of challenging covalent bonds under mild reaction conditions, commonly using photoredox catalysts (PCs) derived from precious metals. As such, there is need to develop organic analogues as sustainable replacements. Although several organic PCs have been introduced, there remains a lack of strongly reducing, visible-light organic PCs. Herein, we establish the critical photophysical and electrochemical characteristics of both a dihydrophenazine and a phenoxazine system that enables their success as strongly reducing, visible-light PCs for trifluoromethylation reactions and dual photoredox/nickel-catalyzed C-N and C-S cross-coupling reactions, both of which have been historically exclusive to precious metal PCs.

18.
Macromol Rapid Commun ; 38(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370656

RESUMO

The recent development of organocatalyzed atom transfer radical polymerization (O-ATRP) represents a significant advancement in the field of controlled radical polymerizations. A number of classes of photoredox catalysts have been employed thus far in O-ATRP. Analysis of the proposed mechanism gives insight into the relevant photophysical and chemical properties that determine catalyst performance. Discussion of each of the classes of O-ATRP catalysts highlights their previous uses, their roles in the development of O-ATRP, and the distinctive properties that govern their polymerization behavior, leading to a set of design principles for O-ATRP catalysts. Remaining challenges for O-ATRP are presented, as well as prospects for further improvement in the application scope of O-ATRP.


Assuntos
Fotoquímica , Polimerização , Catálise
19.
J Am Chem Soc ; 138(35): 11399-407, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27554292

RESUMO

N-Aryl phenoxazines have been synthesized and introduced as strongly reducing metal-free photoredox catalysts in organocatalyzed atom transfer radical polymerization for the synthesis of well-defined polymers. Experiments confirmed quantum chemical predictions that, like their dihydrophenazine analogs, the photoexcited states of phenoxazine photoredox catalysts are strongly reducing and achieve superior performance when they possess charge transfer character. We compare phenoxazines to previously reported dihydrophenazines and phenothiazines as photoredox catalysts to gain insight into the performance of these catalysts and establish principles for catalyst design. A key finding reveals that maintenance of a planar conformation of the phenoxazine catalyst during the catalytic cycle encourages the synthesis of well-defined macromolecules. Using these principles, we realized a core substituted phenoxazine as a visible light photoredox catalyst that performed superior to UV-absorbing phenoxazines as well as previously reported organic photocatalysts in organocatalyzed atom transfer radical polymerization. Using this catalyst and irradiating with white LEDs resulted in the production of polymers with targeted molecular weights through achieving quantitative initiator efficiencies, which possess dispersities ranging from 1.13 to 1.31.


Assuntos
Oxazinas/química , Processos Fotoquímicos , Polimerização , Catálise , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
20.
J Am Chem Soc ; 136(45): 16081-95, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25323134

RESUMO

We use quantum chemical calculations to elucidate a viable mechanism for pyridine-catalyzed reduction of CO2 to methanol involving homogeneous catalytic steps. The first phase of the catalytic cycle involves generation of the key catalytic agent, 1,2-dihydropyridine (PyH2). First, pyridine (Py) undergoes a H(+) transfer (PT) to form pyridinium (PyH(+)), followed by an e(-) transfer (ET) to produce pyridinium radical (PyH(0)). Examples of systems to effect this ET to populate PyH(+)'s LUMO (E(0)(calc) ∼ -1.3 V vs SCE) to form the solution phase PyH(0) via highly reducing electrons include the photoelectrochemical p-GaP system (E(CBM) ∼ -1.5 V vs SCE at pH 5) and the photochemical [Ru(phen)3](2+)/ascorbate system. We predict that PyH(0) undergoes further PT-ET steps to form the key closed-shell, dearomatized (PyH2) species (with the PT capable of being assisted by a negatively biased cathode). Our proposed sequential PT-ET-PT-ET mechanism for transforming Py into PyH2 is analogous to that described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH2 is a potent recyclable organo-hydride donor that mimics important aspects of the role of NADPH in the formation of C-H bonds in the photosynthetic CO2 reduction process. In particular, in the second phase of the catalytic cycle, which involves three separate reduction steps, we predict that the PyH2/Py redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO2 and its two succeeding intermediates, namely, formic acid and formaldehyde, to ultimately form CH3OH. The hydride and proton transfers for the first of these reduction steps, the homogeneous reduction of CO2, are sequential in nature (in which the formate to formic acid protonation can be assisted by a negatively biased cathode). In contrast, these transfers are coupled in each of the two subsequent homogeneous hydride and proton transfer steps to reduce formic acid and formaldehyde.


Assuntos
Materiais Biomiméticos/química , Dióxido de Carbono/química , Metanol/química , Piridinas/química , Catálise , Modelos Moleculares , Conformação Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA