Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1301: 342447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553119

RESUMO

BACKGROUND: Alzheimer's disease (AD), one of the most prevalent neurodegenerative diseases, results in severe cognitive decline and irreversible memory loss. Early detection of AD is significant to patients for personalized intervention since effective cure and treatment methods for AD are still lacking. Despite the severity of the disease, existing highly sensitive AD detection methods, including neuroimaging and brain deposit-positive lesion tests, are not suitable for screening purposes due to their high cost and complicated operation. Therefore, these methods are unsuitable for early detection, especially in low-resource settings. Although regular paper-based microfluidics are cost-efficient for AD detection, they are restricted by a poor limit of detection (LOD). RESULTS: To address the above limitations, we report the ultrasensitive and low-cost nanocellulose paper (nanopaper)-based analytical microfluidic devices (NanoPADs) for detecting one of the promising AD blood biomarkers (glial fibrillary acidic protein, GFAP) using Surface-enhanced Raman scattering (SERS) immunoassay. Nanopaper offers advantages as a SERS substrate, such as an ultrasmooth surface, high optical transparency, and tunable chemical properties. We detected the target GFAP in artificial serum, achieving a LOD of 150 fg mL-1. SIGNIFICANCE: The developed NanoPADs are distinguished by their cost-efficiency and ease of implementation, presenting a promising avenue for effective early detection of AD's GFAP biomarker with ultrahigh sensitivity. More importantly, our work provides the experimental routes for SERS-based immunoassay of biomarkers on NanoPADs for various diseases in the future.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Doença de Alzheimer/diagnóstico , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Imunoensaio/métodos , Análise Espectral Raman/métodos , Biomarcadores
2.
Anal Chim Acta ; 1308: 342575, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740448

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (µPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on µPADs can further facilitate the realization of smartphone µPADs platforms for efficient disease detection. RESULTS: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on µPADs. Our platform successfully applied sandwich c-ELISA for detecting the ß-amyloid peptide 1-42 (Aß 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aß 1-42, particularly in areas with low resources and limited communication infrastructure.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Papel , Smartphone , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Humanos , Biomarcadores/sangue , Biomarcadores/análise , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/sangue , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/análise , Dispositivos Lab-On-A-Chip , Aprendizado Profundo , Automação , Técnicas Analíticas Microfluídicas/instrumentação
3.
ACS Appl Mater Interfaces ; 16(20): 26374-26385, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716706

RESUMO

Metal-organic frameworks (MOFs), which are composed of crystalline microporous materials with metal ions, have gained considerable interest as promising substrate materials for surface-enhanced Raman scattering (SERS) detection via charge transfer. Research on MOF-based SERS substrates has advanced rapidly because of the MOFs' excellent structural tunability, functionalizable pore interiors, and ultrahigh surface-to-volume ratios. Compared with traditional noble metal SERS plasmons, MOFs exhibit better biocompatibility, ease of operation, and tailorability. However, MOFs cannot produce a sufficient limit of detection (LOD) for ultrasensitive detection, and therefore, developing an ultrasensitive MOF-based SERS substrate is imperative. To the best of our knowledge, this is the first study to develop an MOFs/heterojunction structure as an SERS enhancing material. We report an in situ ZIF-67/Co(OH)2 heterojunction-based nanocellulose paper (nanopaper) plate (in situ ZIF-67 nanoplate) as a device with an LOD of 0.98 nmol/L for Rhodamine 6G and a Raman enhancement of 1.43 × 107, which is 100 times better than that of the pure ZIF-67-based SERS substrate. Further, we extend this structure to other types of MOFs and develop an in situ HKUST-1 nanoplate (with HKUST-1/Cu(OH)2). In addition, we demonstrate that the formation of heterojunctions facilitates efficient photoinduced charge transfer for SERS detection by applying the Mx(OH)y-assisted (where M = Co, Cu, or other metals) MOFs/heterojunction structure. Finally, we successfully demonstrate the application of medicine screening on our nanoplates, specifically for omeprazole. The nanoplates we developed still maintain the tailorability of MOFs and perform high anti-interference ability. Our approach provides customizing options for MOF-based SERS detection, catering to diverse possibilities in future research and applications.

4.
ACS Nano ; 18(26): 17041-17052, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904995

RESUMO

Flexible tactile sensors show promise for artificial intelligence applications due to their biological adaptability and rapid signal perception. Triboelectric sensors enable active dynamic tactile sensing, while integrating static pressure sensing and real-time multichannel signal transmission is key for further development. Here, we propose an integrated structure combining a capacitive sensor for static spatiotemporal mapping and a triboelectric sensor for dynamic tactile recognition. A liquid metal-based flexible dual-mode triboelectric-capacitive-coupled tactile sensor (TCTS) array of 4 × 4 pixels achieves a spatial resolution of 7 mm, exhibiting a pressure detection limit of 0.8 Pa and a fast response of 6 ms. Furthermore, neuromorphic computing using the MXene-based synaptic transistor achieves 100% recognition accuracy of handwritten numbers/letters within 90 epochs based on dynamic triboelectric signals collected by the TCTS array, and cross-spatial information communication from the perceived multichannel tactile data is realized in the mixed reality space. The results illuminate considerable application possibilities of dual-mode tactile sensing technology in human-machine interfaces and advanced robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA