Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 922, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195717

RESUMO

This study focused on a novel strategy that combines deep learning and radiomics to predict epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer (NSCLC) using computed tomography (CT). A total of 1280 patients with NSCLC who underwent contrast-enhanced CT scans and EGFR mutation testing before treatment were selected for the final study. Regions of interest were segmented from the CT images to extract radiomics features and obtain tumor images. These tumor images were input into a convolutional neural network model to extract 512 image features, which were combined with radiographic features and clinical data to predict the EGFR mutation. The generalization performance of the model was evaluated using external institutional data. The internal and external datasets contained 324 and 130 EGFR mutants, respectively. Sex, height, weight, smoking history, and clinical stage were significantly different between the EGFR-mutant patient groups. The EGFR mutations were predicted by combining the radiomics and clinical features, and an external validation dataset yielded an area under the curve (AUC) value of 0.7038. The model utilized 1280 tumor images, radiomics features, and clinical characteristics as input data and exhibited an AUC of approximately 0.81 and 0.78 during the primary cohort and external validation, respectively. These results indicate the feasibility of integrating radiomics analysis with deep learning for predicting EGFR mutations. CT-image-based genetic testing is a simple EGFR mutation prediction method, which can improve the prognosis of NSCLC patients and help establish personalized treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Mutação , Radiômica
2.
J Pathol Clin Res ; 10(6): e70004, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39358807

RESUMO

EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarcinoma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under the receiver operating characteristic curve of 0.7680 (0.7607-0.7720) and an area under the precision-recall curve of 0.8391 (0.8326-0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis. Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respectively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of our model and suggest that it can provide crucial information for rapid screening and treatment plans.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Receptores ErbB/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Análise Mutacional de DNA , Feminino , Interpretação de Imagem Assistida por Computador
3.
Clin Imaging ; 114: 110254, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153380

RESUMO

PURPOSE: This study proposed a three-dimensional (3D) multi-modal learning-based model for the automated prediction and classification of lymph node metastasis in patients with non-small cell lung cancer (NSCLC) using computed tomography (CT) images and clinical information. METHODS: We utilized clinical information and CT image data from 4239 patients with NSCLC across multiple institutions. Four deep learning algorithm-based multi-modal models were constructed and evaluated for lymph node classification. To further enhance classification performance, a soft-voting ensemble technique was applied to integrate the outcomes of multiple multi-modal models. RESULTS: A comparison of the classification performance revealed that the multi-modal model, which integrated CT images and clinical information, outperformed the single-modal models. Among the four multi-modal models, the Xception model demonstrated the highest classification performance, with an area under the curve (AUC) of 0.756 for the internal test dataset and 0.736 for the external validation dataset. The ensemble model (SEResNet50_DenseNet121_Xception) exhibited even better performance, with an AUC of 0.762 for the internal test dataset and 0.751 for the external validation dataset, surpassing the multi-modal model's performance. CONCLUSIONS: Integrating CT images and clinical information improved the performance of the lymph node metastasis prediction models in patients with NSCLC. The proposed 3D multi-modal lymph node prediction model can serve as an auxiliary tool for evaluating lymph node metastasis in patients with non-pretreated NSCLC, aiding in patient screening and treatment planning.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metástase Linfática , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Idoso , Aprendizado Profundo , Imageamento Tridimensional/métodos , Adulto , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Linfonodos/patologia , Linfonodos/diagnóstico por imagem
4.
Sci Rep ; 12(1): 6281, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428854

RESUMO

In this study, we developed a deep learning model to identify patients with tongue cancer based on a validated dataset comprising oral endoscopic images. We retrospectively constructed a dataset of 12,400 verified endoscopic images from five university hospitals in South Korea, collected between 2010 and 2020 with the participation of otolaryngologists. To calculate the probability of malignancy using various convolutional neural network (CNN) architectures, several deep learning models were developed. Of the 12,400 total images, 5576 images related to the tongue were extracted. The CNN models showed a mean area under the receiver operating characteristic curve (AUROC) of 0.845 and a mean area under the precision-recall curve (AUPRC) of 0.892. The results indicate that the best model was DenseNet169 (AUROC 0.895 and AUPRC 0.918). The deep learning model, general physicians, and oncology specialists had sensitivities of 81.1%, 77.3%, and 91.7%; specificities of 86.8%, 75.0%, and 90.9%; and accuracies of 84.7%, 75.9%, and 91.2%, respectively. Meanwhile, fair agreement between the oncologist and the developed model was shown for cancer diagnosis (kappa value = 0.685). The deep learning model developed based on the verified endoscopic image dataset showed acceptable performance in tongue cancer diagnosis.


Assuntos
Aprendizado Profundo , Neoplasias da Língua , Humanos , Redes Neurais de Computação , Curva ROC , Estudos Retrospectivos , Língua , Neoplasias da Língua/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA