Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118680

RESUMO

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/genética , Antígeno CTLA-4/genética , Regulação Neoplásica da Expressão Gênica , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Glicosilação , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Serina/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
2.
J Biol Chem ; 298(4): 101817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278434

RESUMO

Expression of the receptor tyrosine kinase ephrin receptor A10 (EphA10), which is undetectable in most normal tissues except for the male testis, has been shown to correlate with tumor progression and poor prognosis in several malignancies, including triple-negative breast cancer (TNBC). Therefore, EphA10 could be a potential therapeutic target, likely with minimal adverse effects. However, no effective clinical drugs against EphA10 are currently available. Here, we report high expression levels of EphA10 in tumor regions of breast, lung, and ovarian cancers as well as in immunosuppressive myeloid cells in the tumor microenvironment. Furthermore, we developed anti-EphA10 monoclonal antibodies (mAbs) that specifically recognize cell surface EphA10, but not other EphA family isoforms, and target tumor regions precisely in vivo with no apparent accumulation in other organs. In syngeneic TNBC mouse models, we found that anti-EphA10 mAb clone #4 enhanced tumor regression, therapeutic response rate, and T cell-mediated antitumor immunity. Notably, the chimeric antigen receptor T cells derived from clone #4 significantly inhibited TNBC cell viability in vitro and tumor growth in vivo. Together, our findings suggest that targeting EphA10 via EphA10 mAbs and EphA10-specific chimeric antigen receptor-T cell therapy may represent a promising strategy for patients with EphA10-positive tumors.


Assuntos
Anticorpos Monoclonais , Receptores de Antígenos Quiméricos , Receptores da Família Eph , Linfócitos T , Neoplasias de Mama Triplo Negativas , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Receptores da Família Eph/imunologia , Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Semin Cancer Biol ; 65: 51-64, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31874279

RESUMO

Immune checkpoint inhibitors (ICIs) are novel class of anti-cancer drugs that exhibit significant therapeutic effects even in patients with advanced-stage cancer. However, the efficacy of ICIs is limited due to resistance. Therefore, appropriate biomarkers to select patients who are likely to respond to these drugs as well as combination therapy to overcome the resistance are urgently necessary. Cancer is caused by various genetic alterations that lead to abnormalities in oncogenic signaling pathways. The aberrant oncogenic signaling pathways serve as not only prognostic and predictive biomarkers, but also targets for molecularly targeted therapy. Growing evidence shows that the aberrant oncogenic signaling pathways in cancer cells facilitate the resistance to ICIs by modulating the regulation of immune checkpoint and cancer immune surveillance. Indeed, it has been demonstrated that some molecular targeted therapies significantly improve the efficacy of ICIs in preclinical and clinical studies. In this review, we highlighted several oncogenic signaling pathways including receptor tyrosine kinases (RTKs), MAPK, PI3K-AKT-mTOR, JAK-STAT, Hippo, and Wnt pathways, and summarized the recent findings of the mechanisms underlying the regulation of cancer immunity and the ICI resistance induced by these aberrant oncogenic signaling pathways in cancer cells. Moreover, we discussed potential combination therapies with ICIs and molecularly targeted drugs to overcome the resistance and increase the efficacy of ICIs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/efeitos adversos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Evasão da Resposta Imune/imunologia , Mutação/genética , Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais/imunologia
4.
Mol Carcinog ; 59(7): 691-700, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115801

RESUMO

Triple-negative breast cancer (TNBC) lacks a well-defined molecular target and is associated with poorer outcomes compared to other breast cancer subtypes. Programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy shows a 10% to 20% response rate in TNBC patients. Our previous studies show that PD-L1 proteins are heavily glycosylated in TNBC, and the glycosylation plays an important role in the PD-L1 protein's stability and immunosuppressive function. However, a strategy for PD-L1 deglycosylation in TNBC is poorly defined. Here we found that a saccharide analog, 2-deoxy- d-glucose (2-DG), inhibits glycosylation of PD-L1 and its immunosuppressive function by combining with EGFR inhibitor, gefitinib. Interestingly, 2-DG/gefitinib-induced deglycosylation of PD-L1 decreased the expression level of PD-L1 protein as well as its binding with PD-1. However, there was no significant decrease in 4-1BB expression and its binding with 4-1BBL by 2-DG/gefitinib. Furthermore, we demonstrated that the combination treatment of 2-DG/gefitinib and 4-1BB antibody enhances antitumor immunity in TNBC syngeneic murine models. Together, our results suggest a new immunotherapeutic strategy to enhance antitumor immunity by PD-L1 deglycosylation and 4-1BB stimulation in TNBC.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Desoxiglucose/farmacologia , Glucose/farmacologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Anticorpos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Gefitinibe/farmacologia , Células HEK293 , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C
5.
Gut ; 68(9): 1653-1666, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30902885

RESUMO

OBJECTIVE: In the tumour microenvironment, critical drivers of immune escape include the oncogenic activity of the tumour cell-intrinsic osteopontin (OPN), the expression of programmed death ligand 1 (PD-L1) and the expansion of tumour-associated macrophages (TAMs). We investigated the feasibility of targeting these pathways as a therapeutic option in hepatocellular carcinoma (HCC) mouse models. DESIGN: We analysed the number of tumour-infiltrating immune cells and the inflammatory immune profiles in chemically induced liver tumour isolated from wild-type and OPNknockout (KO) mice. In vitro cell cocultures were further conducted to investigate the crosstalk between TAMs and HCC cells mediated by OPN, colony stimulating factor-1 (CSF1) and CSF1 receptor (CSF1R). The in vivo efficacy of anti-PD-L1 and CSF1/CSF1R inhibition was evaluated in OPN overexpressing subcutaneous or orthotopic mouse model of HCC. RESULTS: The numbers of TAMs, as well as the expression levels of M2 macrophage markers and PD-L1 were significantly decreased, but the levels of cytokines produced by T-helper 1 (Th1) cells were upregulated in tumour tissues from OPN KO mice compared with that from the controls. In addition, we observed a positive association between the OPN and PD-L1 expression, and OPN expression and TAM infiltration in tumour tissues from patients with HCC. We further demonstrated that OPN facilitates chemotactic migration, and alternative activation of macrophages, and promotes the PD-L1 expression in HCC via activation of the CSF1-CSF1R pathway in macrophages. Combining anti-PD-L1 and CSF1R inhibition elicited potent antitumour activity and prolonged survival of OPNhigh tumour-bearing mice. Histological, flow cytometric and ELISA revealed increased CD8+ T cell infiltration, reduced TAMs and enhanced Th1/Th2 cytokine balance in multiple mouse models of HCC. CONCLUSIONS: OPN/CSF1/CSF1R axis plays a critical role in the immunosuppressive nature of the HCC microenvironment. Blocking CSF1/CSF1R prevents TAM trafficking and thereby enhances the efficacy of immune checkpoint inhibitors for the treatment of HCC.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Macrófagos/imunologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Quimiotaxia/imunologia , Citocinas/biossíntese , Deleção de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Linfócitos do Interstício Tumoral/imunologia , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Masculino , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Osteopontina/genética , Osteopontina/imunologia , Prognóstico , Pirróis/farmacologia , Pirróis/uso terapêutico , Células Tumorais Cultivadas , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
6.
Nature ; 497(7449): 383-7, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23636329

RESUMO

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.


Assuntos
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Hipóxia Celular/fisiologia , Receptores ErbB/metabolismo , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/biossíntese , MicroRNAs/química , MicroRNAs/genética , Invasividade Neoplásica , Conformação de Ácido Nucleico , Fosforilação , Fosfotirosina/metabolismo , Prognóstico , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonuclease III/metabolismo , Análise de Sobrevida
7.
Biochem Biophys Res Commun ; 433(1): 6-10, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23454378

RESUMO

Notch1 intracellular domain (NICD) is the transcription factor which controls cell fate and differentiation in embryonic and tumor cells. Snail has a critical role which increases invasion and metastasis of cancer cell as a transcription factor and epigenetic regulator. Recently, we discovered NICD induced Snail degradation by direct binding interaction with Snail. In this experiment, we found that Snail suppressed transcriptional activity of the protein complex formed with NICD and RBPJk in nucleus. Moreover, Snail decreased transcription of NICD target genes via competing with MAML1, co-activator, in NICD complex. In conclusion, Snail inhibited NICD-mediated transcriptional activation of target genes by physical interaction with NICD.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptor Notch1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Ligação Competitiva , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Estrutura Terciária de Proteína , Receptor Notch1/química , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Ativação Transcricional
8.
Cancer Res Commun ; 3(5): 860-873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377896

RESUMO

Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance: Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.


Assuntos
Neoplasias , Pesquisa Translacional Biomédica , Humanos , Cães , Animais , Camundongos , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Anticorpos
9.
Am J Cancer Res ; 13(4): 1209-1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168336

RESUMO

Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins. We combined in silico prediction with site-directed mutagenesis approaches and identified a putative NES motif of EGFR, which is located in amino acid residues 736-749. Mutation at leucine 747 (L747) in the EGFR NES led to increased nuclear accumulation of the protein via a less efficient release of the exportin CRM1. Interestingly, L747 with serine (L747S) and with proline (L747P) mutations were found in both tyrosine kinase inhibitor (TKI)-treated and -naïve patients with lung cancer who had acquired or de novo TKI resistance and a poor outcome. Reconstituted expression of the single NES mutant EGFRL747P or EGFRL747S, but not the dual mutant along with the internalization-defective or NLS mutation, in lung cancer cells promoted malignant phenotypes, including cell migration, invasiveness, TKI resistance, and tumor initiation, supporting an oncogenic role of nuclear EGFR. Intriguingly, cells with germline expression of the NES L747 mutant developed into B cell lymphoma. Mechanistically, nuclear EGFR signaling is required for sustaining nuclear activated STAT3, but not for Erk. These findings suggest that EGFR functions are compartmentalized and that nuclear EGFR signaling plays a crucial role in tumor malignant phenotypes, leading to tumorigenesis in human cancer.

10.
Hepatology ; 53(4): 1352-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21480340

RESUMO

UNLABELLED: The tumor suppressor p53 is a key prognostic factor in hepatocellular carcinoma (HCC), yet only 35% of grade III tumors exhibit mutation of p53. Several other pathways have been implicated in HCC and, among these, the role of the Notch1/Snail pathway remains unclear. Therefore, we investigated the expression of p53, Notch1, and Snail proteins in HCC with regard to both clinical grade and p53 mutational status. Immunoblotting for p53 revealed that, whereas in many tumors increased p53 was a result of p53 mutation, wildtype p53 (p53WT) expression was also frequently elevated in HCCs. Coordinated evaluation of p53, Notch1, and Snail expression suggests that grade III HCC can be subdivided based on the expression of these three proteins. We found that Notch1 expression in HCC tissues and cell lines is differentially affected by p53WT and mutant p53 (p53Mut). Notch1 expression was correlated with p53 expression in cells expressing p53WT, but was not elevated in p53Mut-expressing cells. Virally mediated expression or silencing of p53WT or p53Mut confirmed that p53WT overexpression causes Notch1 up-regulation in HCC. Surprisingly, the consequence of Notch1 overexpression for the proliferative and invasive capacity of HCC cells depends on both the p53 mutational status and activation of the Snail pathway. CONCLUSION: In the presence of p53WT, Snail/Notch1 activation increased the invasiveness of HCC cells. In contrast, in the absence of p53WT, Notch1 decreased the invasiveness of HCC. Taken together, these findings shed new light on the complex role of the Notch1/Snail axis in HCC and provide a framework for further classifying HCC based on the expression and mutational status of p53 and the expression of Notch1 and Snail.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Notch1/fisiologia , Proteína Supressora de Tumor p53/biossíntese , Adulto , Animais , Carcinoma Hepatocelular/classificação , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Proteína Supressora de Tumor p53/genética
11.
BMC Biol ; 9: 83, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22128911

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common, highly invasive malignant tumor associated with a high mortality rate. We previously reported that the aberrant expression of Snail via activation of reactive oxygen species contributes to the invasive property of HCC, in part by downregulation of E-cadherin through both transcriptional repression and epigenetic modification of the E-cadherin promoter. Having demonstrated the ability of Snail to bind and recruit histone deacetylase 1 and DNA methyltransferase 1 in this context, we set out to look for other interactions that could affect its ability to promote oncogenic transformation and cancer cell invasion. RESULTS: Using cells that stably expressed Snail, we characterized Snail protein interactors by tandem affinity purification and mass spectrometry. Immunoprecipitation and subcellular colocalization studies were performed to confirm our identification of the Notch1 intracellular domain (NICD) as a novel Snail-binding partner. NICD interaction with Snail was found to induce ubiquitination and MDM2-dependent degradation of Snail. Interestingly, NICD inhibited Snail-dependent invasive properties in both HCC cells and mouse embryonic fibroblasts. CONCLUSIONS: Our study demonstrates that NICD can oppose Snail-dependent HCC cell invasion by binding and inducing proteolytic degradation of Snail. Although Notch signaling and Snail are both widely considered tumor-promoting factors, our findings indicate that the individual oncogenic contribution of Notch1 and Snail in malignant systems should be interpreted carefully, particularly when they are conjointly expressed.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Invasividade Neoplásica , Ligação Proteica , Estrutura Terciária de Proteína , Receptor Notch1/análise , Fatores de Transcrição da Família Snail , Fatores de Transcrição/química , Ubiquitinação , Dedos de Zinco
12.
FEBS J ; 289(15): 4549-4563, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35112462

RESUMO

4-1BB [tumor necrosis factor receptor superfamily (TNFRSF9), CD137) is a critical immune stimulator that sustains T cell activity and antitumor immune response. The strategy to eliminate cancers by agonistically targeting 4-1BB is under clinical investigation. As a protein expressed in an inducible manner, 4-1BB is under tight control on both transcription and translation levels to maintain its homeostasis. So far, the mechanisms underlying the transcriptional activation of 4-1BB have been well-interpreted; however, it remains inexplicit how 4-1BB is regulated on the protein level. In this study, we presented experimental evidence supporting that 4-1BB, especially the heavily N-glycosylated (mature) form, is polyubiquitinated and subjected to the ubiquitin-proteasomal system for degradation. By performing proximity-dependent biotin identification screening coupled with biochemical assays, we identified that F-box/LRR-repeat protein 20 acts as the E3 ligase that promotes the polyubiquitination of 4-1BB at the intracellular domain. Our data provided mechanistic insight into 4-1BB regulation on the protein level by unmasking, for the first time, a posttranslational mechanism governing 4-1BB abundance in cells. The findings of this study could potentially guide the development of 4-1BB-targeted therapy for cancers as well as other immune disorders.


Assuntos
Proteínas F-Box , Neoplasias , Ubiquitinação , Proteínas F-Box/metabolismo , Humanos , Linfócitos T , Ativação Transcricional , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Front Oncol ; 12: 968360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185242

RESUMO

Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body's immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body's immune response, have been widely studied and established in clinic. In contrast, however, there remains room for the development and improvement of therapeutics that target costimulatory receptors and enhance the immune response against tumors, one of which being the 4-1BB (CD137/ILA/TNFRSF9) receptor. 4-1BB has been garnering attention as a promising therapeutic target in the setting of cancer, amongst other diseases, due to its broad expression profile and ability to stimulate various signaling pathways involved in the generation of a potent immune response. Since its discovery and demonstration of potential as a clinical target, major progress has been made in the knowledge of 4-1BB and the development of clinical therapeutics that target it. Thus, we seek to summarize and provide a comprehensive update and outlook on those advancements in the context of cancer and immunotherapy.

14.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011724

RESUMO

Leveraging the T cell immunity against tumors represents a revolutionary type of cancer therapy. 4-1BB is a well-characterized costimulatory immune receptor existing on activated T cells and mediating their proliferation and cytotoxicity under infectious diseases and cancers. Despite the accumulating interest in implementing 4-1BB as a therapeutic target for immune-related disorders, less is known about the pattern of its intracellular behaviors and regulations. It has been previously demonstrated that 4-1BB is heavily modified by N-glycosylation; however, the biological importance of this modification lacks detailed elucidation. Through biochemical, biophysical, and cell-biological approaches, we systematically evaluated the impact of N-glycosylation on the ligand interaction, stability, and localization of 4-1BB. We hereby highlighted that N-glycan functions by preventing the oligomerization of 4-1BB, thus permitting its membrane transportation and fast turn-over. Without N-glycosylation, 4-1BB could be aberrantly accumulated intracellularly and fail to be sufficiently inserted in the membrane. The N-glycosylation-guided intracellular processing of 4-1BB serves as the potential mechanism explicitly modulating the "on" and "off" of 4-1BB through the control of protein abundance. Our study will further solidify the understanding of the biological properties of 4-1BB and facilitate the clinical practice against this promising therapeutic target.


Assuntos
Ligante 4-1BB/metabolismo , Imunoterapia/métodos , Glicosilação , Humanos
15.
Biochem Biophys Res Commun ; 404(1): 68-73, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21094134

RESUMO

Alteration of epidermal growth factor receptor (EGFR) is involved in various human cancers and has been intensively investigated. A plethora of evidence demonstrates that posttranslational modifications of EGFR play a pivotal role in controlling its function and metabolism. Here, we show that EGFR can be acetylated by CREB binding protein (CBP) acetyltransferase. Interestingly, EGFR acetylation affects its tyrosine phosphorylation, which may contribute to cancer cell resistance to histone deacetylase inhibitors (HDACIs). Since there is an increasing interest in using HDACIs to treat various cancers in the clinic, our current study provides insights and rationale for selecting effective therapeutic regimen. Consistent with the previous reports, we also show that HDACI combined with EGFR inhibitors achieves better therapeutic outcomes and provides a molecular rationale for the enhanced effect of combination therapy. Our results unveil a critical role of EGFR acetylation that regulates EGFR function, which may have an important clinical implication.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos , RNA Interferente Pequeno/genética , Vorinostat
16.
Cells ; 10(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064396

RESUMO

Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.


Assuntos
Neoplasias/imunologia , Processamento de Proteína Pós-Traducional , Receptores Imunológicos/metabolismo , Animais , Glicosilação , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico
17.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33855973

RESUMO

Immune checkpoint blockade therapy has demonstrated promising clinical outcomes for multiple cancer types. However, the emergence of resistance as well as inadequate biomarkers for patient stratification have largely limited the clinical benefits. Here, we showed that tumors with high TYRO3 expression exhibited anti-programmed cell death protein 1/programmed death ligand 1 (anti-PD-1/PD-L1) resistance in a syngeneic mouse model and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, TYRO3 inhibited tumor cell ferroptosis triggered by anti-PD-1/PD-L1 and facilitated the development of a protumor microenvironment by reducing the M1/M2 macrophage ratio, resulting in resistance to anti-PD-1/PD-L1 therapy. Inhibition of TYRO3 promoted tumor ferroptosis and sensitized resistant tumors to anti-PD-1 therapy. Collectively, our findings suggest that TYRO3 could serve as a predictive biomarker for patient selection and a promising therapeutic target to overcome anti-PD-1/PD-L1 resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Ferroptose/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata , Neoplasias/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores Proteína Tirosina Quinases/genética , Células THP-1
18.
Gastroenterology ; 135(6): 2128-40, 2140.e1-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801366

RESUMO

BACKGROUND & AIMS: In addition to genetic alterations, epigenetic changes underlie tumor progression and metastasis. Promoter methylation can silence tumor suppressor genes, and reactive oxygen species (ROS) promote DNA damage, although the relationship between ROS and epigenetic changes in cancer cells is not clear. We sought to determine whether ROS promote hypermethylation of the promoter region of E-cadherin, a regulator of the epithelial-to-mesenchymal transition, in hepatocellular carcinoma (HCC) cells. METHODS: HCC cells were exposed to H(2)O(2) or stably transfected to express Snail, a transcription factor that down-regulates E-cadherin expression. E-cadherin and Snail expression levels were examined by real-time reverse-transcriptase polymerase chain reaction and immunoblot analyses. The methylation status of E-cadherin was examined by methyl-specific polymerase chain reaction, bisulfite sequencing, and chromatin immunoprecipitation. The interactions between Snail, histone deacetylase 1, and DNA methyltransferase 1 were assessed by immunoprecipitation/immunoblot and immunofluorescence analyses. ROS-induced stress, E-cadherin expression, Snail expression, and E-cadherin promoter methylation were confirmed in HCC tissues by immunoblot, immunohistochemistry, and methyl-specific polymerase chain reaction analyses. RESULTS: We demonstrated that ROS induce hypermethylation of the E-cadherin promoter by increasing Snail expression. Snail induced DNA methylation of the E-cadherin promoter by recruiting histone deacetylase 1 and DNA methyltransferase 1. In human HCC tissues, we observed a correlation among ROS induction, E-cadherin down-regulation, Snail up-regulation, and E-cadherin promoter methylation. CONCLUSIONS: These findings provide novel mechanistic insights into epigenetic modulations induced by ROS in the process of carcinogenesis. They are potentially relevant to understanding the activity of ROS in silencing various tumor suppressor genes and in subsequent tumor progression and metastasis.


Assuntos
Caderinas/genética , Carcinoma Hepatocelular/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Adulto , Idoso , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Imunoprecipitação da Cromatina , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Metilação/efeitos dos fármacos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA , Células Tumorais Cultivadas
19.
J Clin Invest ; 129(8): 3324-3338, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31305264

RESUMO

Glycosylation of immune receptors and ligands, such as T cell receptor and coinhibitory molecules, regulates immune signaling activation and immune surveillance. However, how oncogenic signaling initiates glycosylation of coinhibitory molecules to induce immunosuppression remains unclear. Here we show that IL-6-activated JAK1 phosphorylates programmed death-ligand 1 (PD-L1) Tyr112, which recruits the endoplasmic reticulum-associated N-glycosyltransferase STT3A to catalyze PD-L1 glycosylation and maintain PD-L1 stability. Targeting of IL-6 by IL-6 antibody induced synergistic T cell killing effects when combined with anti-T cell immunoglobulin mucin-3 (anti-Tim-3) therapy in animal models. A positive correlation between IL-6 and PD-L1 expression was also observed in hepatocellular carcinoma patient tumor tissues. These results identify a mechanism regulating PD-L1 glycosylation initiation and suggest the combination of anti-IL-6 and anti-Tim-3 as an effective marker-guided therapeutic strategy.


Assuntos
Antígeno B7-H1/imunologia , Interleucina-6/imunologia , Janus Quinase 1/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Transdução de Sinais/imunologia , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Estabilidade Proteica
20.
FEBS J ; 275(12): 3145-56, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18489585

RESUMO

The tight junction protein occludin participates in cell adhesion and migration and has been shown to possess antitumorigenic properties; however, the exact mechanism underlying these effects is poorly understood. In liver cell lines, we identified an occludin splice variant deleted in exon 9 (Occ(DeltaE9)). Furthermore, comparison analysis of wild-type occludin (Occ(WT)) and Occ(DeltaE9) revealed that exon 9 played important roles in the induction of mitochondria-mediated apoptosis and the inhibition of invasion, along with the downregulation of matrix metalloproteinase expression. In addition, by using the calcium indicator X-rhod-1, and the inositol trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate, we found that Occ(WT) but not Occ(DeltaE9) increased calcium release from the endoplasmic reticulum. In conclusion, our results showed that occludin mediates apoptosis and invasion by elevating the cytoplasmic calcium concentration and that exon 9 of occludin is an important region that mediates these effects.


Assuntos
Processamento Alternativo , Apoptose , Proteínas de Membrana/genética , Invasividade Neoplásica , Sequência de Aminoácidos , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Metilação de DNA , Éxons , Inativação Gênica , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Ocludina , Regiões Promotoras Genéticas , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA