Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nanotechnology ; 35(24)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38461551

RESUMO

The sensor, designed to be worn directly on the skin, is suitable for real-time monitoring of the recovery level of not only general wounds, but also difficult-to-heal wounds, such as those with chronic inflammation. Notably, healthy skin has a pH range of 4-6. When a wound occurs, the pH is known to be approximately 7.4. In this study, alpha-naphtholphthalein (Naph) was immersed in a cotton-blended textile to produce a wearable halochromic sensor that clearly changed color depending on the pH of the skin in the range 6-9, including pH 7.4, which is the skin infection state. The coating was performed without using an organic solvent by dissolving it in micelle form using cetyltrimethylammonium bromide, a surfactant, in water. Naph-based halochromic sensor shows light yellow, which is the dye's own color, at pH 6, which is a healthy skin condition, and gradually showed a clear color change to light green-green-blue as pH increased. Even after washing and drying by rubbing with regular tap water, the color change due to pH was maintained more than 10 times. Naph-based halochromic sensors use a simple solution production and coating method and are not only reusable sensors that can be washed with water but also use environmentally friendly water, making them very suitable for developing commercial products for wound pH monitoring. In addition, it can be easily applied to medical supplies, such as medical gauze, patient clothes, and compression bandages, as well as everyday wear, such as clothing, gloves, and socks. Therefore, it is expected to be widely used as a wound pH sensor, allowing real-time monitoring of the skin condition of individuals with chronic skin inflammation, including patients requiring wound recovery.


Assuntos
Fenolftaleínas , Água , Dispositivos Eletrônicos Vestíveis , Humanos , Análise Custo-Benefício , Inflamação , Concentração de Íons de Hidrogênio
2.
Nanotechnology ; 27(50): 505203, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27841161

RESUMO

The motion, in particular the flow speed and dropping height, of a water droplet was observed using a tin oxide (SnO2) nanowire transistor with a polyurethane (PU) nanofiber mesh as a selective filter. The changes in the SnO2 nanowire transistor characteristics, particularly the threshold voltage and on-current, were due to the adsorbed water molecules that acted as electron donors on the surface of the oxide nanowire semiconducting channel. The role of the PU nanofiber mesh, allowing the passage of water vapor while blocking liquid water, was to restrict the direct contact between the water droplet and the oxide nanowire semiconducting channel and electrodes, which could cause abnormal transistor characteristics. The selective filtering properties of the PU nanofiber mesh could be controlled by changing the number of PU layers.

3.
Nanotechnology ; 26(14): 145203, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25771996

RESUMO

The controllability and stability of nanowire transistor characteristics are essential for the development of low-noise and fast-switching nano-electronic devices. In this study, the positive shift of threshold voltage and the improvement of interface quality on In2O3 nanowire transistors were simultaneously achieved by using octadecylphosphonic acid (OD-PA) self-assembly. Following the chemical bond of OD-PA molecules on the surface of In2O3 nanowires, the threshold voltage was positively shifted to 2.95 V, and the noise amplitude decreased to approximately 87.5%. The results suggest that an OD-PA self-assembled monolayer can be used to manipulate and stabilize the transistor characteristics of nanowire-based memory and display devices that require high-sensitivity, low-noise, and fast-response.

4.
Nanotechnology ; 25(5): 055205, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24406901

RESUMO

Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (∼40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

5.
RSC Adv ; 14(10): 6856-6864, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38410367

RESUMO

Among different heat-responsive polymers, hydroxypropyl cellulose (HPC) is biodegradable and is widely used in products that are harmless to the human body, such as food and pharmaceuticals. When the temperature of the hydrogel-type HPC increases, the hydrophilic bonds between the HPC molecules break, and the HPC molecules aggregate owing to the hydrophobic bonds. Therefore, light transmittance may vary because the aggregated HPC molecules scatter light. This study investigated the implementation of a display using the thermoreversible phase transition of HPC. Herein, a near-infrared (NIR) laser was irradiated only to a local area to control the surface temperature and enable the effective operation of the thermoreversible phase transition of HPC. For this, cesium tungsten oxide (CTO), which absorbs NIR light and generates heat, was mixed with the HPC hydrogel to improve the photothermal effect. Moreover, by additionally mixing carbon nanotubes (CNTs) with high thermal conductivity, the heat generated from the CTO is quickly transferred to the HPC hydrogel, and the heat of the HPC hydrogel is quickly cooled through the CNTs after stopping the NIR laser irradiation. The produced NIR-writing CTO-CNT-HPC (CCH) thermoresponsive display exhibited a fast thermoresponsive time. The CCH thermoresponsive display developed in this study can be applied in situations that require fast display response times, such as interactive advertising, property exhibitions, navigation systems for car, schedule information, event information, and public announcements.

6.
RSC Adv ; 14(9): 6156-6164, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38375008

RESUMO

Color-changing fibers, which can intuitively convey information to the human eye, can be used to facilely add functionality to various types of clothing. However, they are often expensive and complex, and can suffer from low durability. Therefore, in this study, we developed highly elastic and hydrophobic thermochromic fibers as wearable temperature sensors using a simple method that does not require an electric current. A thermochromic pigment was embedded inside and outside hydrophobic silica aerogel particles, following which the thermochromic aerogel was fixed to highly elastic spandex fibers using polydimethylsiloxane as a flexible binder. In particular, multi-strand spandex fibers were used instead of single strands, resulting in the thermochromic aerogels penetrating the inside of the strands upon their expansion by solvent swelling. During drying, the thermochromic aerogel adhered more tightly to the fibers by compressing the strands. The thermochromic fiber was purple at room temperature (25 °C), but exhibited a two-stage color change to blue and then white as the temperature increased to 37 °C. In addition, even after 100 cycles of tension-contraction at 200%, the thermochromic aerogel did not detach and was strongly attached to the fiber. Additionally, it was confirmed that color change due to temperature was stable even after exposure to 1 wt% NaCl (artificial sweat) and 0.1 wt% detergent solutions. The developed thermochromic fiber therefore exhibited excellent elasticity and hydrophobicity, and is expected to be widely utilized as an economical wearable temperature sensor as it does not require electrical devices.

7.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38397793

RESUMO

Photoaging refers to the accumulation of skin damage which includes wrinkle formation, loss of elasticity, and epidermal thickening due to repeated ultraviolet (UV) irradiation. The present study investigated the protective effects of Elaeagnus umbellata fruit extract (Elaea) on UV-mediated photoaged skin of SKH1 hairless mice and compared the effects of Elaea with ascorbic acid. Although there was no difference in body weight between groups during experimental period, oral administration of 50-200 mg/kg Elaea once daily for 15 weeks significantly prevented an increase in skin weight, epithelial thickening of epidermis, and apoptosis caused by UV irradiation. Skin replica and histopathological analyses revealed that Elaea dose-dependently decreased wrinkle and microfold formation. In addition, Elaea administration restored UV-mediated reduction in type I collagen and hyaluronan through the inhibition of matrix metalloproteinases and p38 mitogen-activated protein kinase expression. Moreover, Elaea suppressed UV-dependent increases in superoxide anion production, fatty acid oxidation, and protein nitration by up-regulating antioxidant system. Furthermore, Elaea alleviated infiltration of inflammatory cells in UV-irradiated skin. The preventive effects of 100 mg/kg Elaea administration against UV-induced photoaging were similar to those by 100 mg/kg ascorbic acid. Collectively, the present study suggests that the E. umbellata fruit is a promising edible candidate to prevent skin photoaging.

8.
Nanotechnology ; 23(48): 485702, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23123512

RESUMO

Single-crystalline SnO(2) nanowires were directly grown on an amorphous WO(x) thin film, leading to the formation of nano-scale contacts with a near-Ohmic conductance. The WO(x) facilitated the diffusion of SnO(2) on the surface of the WO(x) thin film, and SnO(2) nanowires could be uniformly grown from the diffused SnO(2). The contact properties between the metallic WO(x) and a semiconducting SnO(2) nanowire were examined. The resistivity of the WO(x)-SnO(2) nanowire contact was found to be approximately 2.6 × 10(-5) Ω cm(2). This was comparable to the resistivity of a contact between an Al electrode and a SnO(2) nanowire with a contact area. A fabricated SnO(2) nanowire transistor exhibited an on-current of approximately 386 nA, a threshold voltage of approximately 3.8 V, a subthreshold slope of approximately 0.26 V/dec and a field-effect mobility of approximately 43 cm(2) V(-1) s(-1).

9.
Nanotechnology ; 22(30): 305704, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21709348

RESUMO

One-dimensional SnO(2) nanomaterials with wide bandgap characteristics are attractive for flexible and/or transparent displays and high-performance nano-electronics. In this study, the crystallinity of SnO(2) nanowires was regulated by controlling their growth temperatures. Moreover, the correlation of the crystallinity of nanowires with optical and electrical characteristics was analyzed. When SnO(2) nanowires were grown at temperatures below 900 °C, they showed various growth directions and abnormal discontinuity in their crystal structures. On the other hand, most nanowires grown at 950 °C exhibited a regular growth trend in the direction of [100]. In addition, the low temperature photoluminescence measurement revealed that the higher growth temperatures of nanowires gradually decreased the 500 nm peak rather than the 620 nm peak. The former peak is derived from the surface defect related to the shallow energy level and affects nanowire surface states. Owing to crystallinity and defects, the threshold voltage range (maximum-minimum) of SnO(2) nanowire transistors was 1.5 V at 850 °C, 1.1 V at 900 °C, and 0.5 V at 950 °C, with dispersion characteristics dramatically decreased. This study successfully demonstrated the effects of nanowire crystallinity on optical and electrical characteristics. It also suggested that the optical and electrical characteristics of nanowire transistors could be regulated by controlling their growth temperatures in the course of producing SnO(2) nanowires.

10.
Nanotechnology ; 22(40): 405203, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21896980

RESUMO

The development of display scan drivers is an essential step in the effort to develop transparent and flexible display devices based on nanowire transistors. Here we report a transparent nanowire-based shift register that functions as the standard logic circuit of a display scan driver. To form the shift register circuits using only n-type nanowire transistors, a novel circuit structure was introduced to avoid the output voltage drop typical of purely n-type circuits. A circuit simulation based on the measured nanowire transistor characteristics was developed in the planning phase to verify the circuit operation of the shift register. The shift register successfully produced an output of 0-3 V without an output voltage drop while applying an input of 3 V peak to peak. In addition, the shift register was designed to have multiple channels with a randomly oriented nanowire placement method to enhance the operation yield.

11.
J Nanosci Nanotechnol ; 11(8): 7022-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103116

RESUMO

This study analyzed correlations between semiconducting properties and defects in oxide nanowires by changing the growth temperature and adding a reducing agent. Oxide nanowires each showed different emission spectra and semiconducting properties depending on growth factors caused by structural/intrinsic defects on the surface of the oxide nanowires. In particular, the substrate temperature played a key role in controlling defects during nanowire growth, and defects were reduced more effectively by adding a reducing agent to the source material. Oxide nanowires with reduced defects showed transistor characteristics with an on-current 2.5 times higher and a mobility 3 times higher than as-grown nanowires.

12.
ACS Appl Mater Interfaces ; 13(17): 20689-20697, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890461

RESUMO

A smart window, which can easily adjust light transmittance, can provide barrier functions, such as improvement in energy efficiency, glare prevention, and privacy protection. However, a smart window that can selectively provide real-time information and display various colorful characters and images at a desired location has not been developed. In this study, a novel smart window capable of real-time information conversion is developed by advancing the light transmittance control of the existing smart windows. A transparent and flexible window display is fabricated by synthesizing poly(N-isopropylacrylamide) (pNIPAM)-N,N-methylenebisacrylamide-crosslinked hydrogels (NBcH) and near-infrared (NIR) absorption-heating films sandwiched between two plastic substrates. When the NIR laser irradiates the window display panel surface, the temperature rises rapidly, as the NIR absorption-heating film absorbs the NIR wavelength. The generated heat is transferred to pNIPAM in contact with the NIR absorption-heating film, and an image forms in real time. In addition, if the NIR laser and projector simultaneously irradiate the window display panel surface, various colorful images can be displayed. The smart window for real-time information provision proposed in this study acts like a glass curtain that can selectively make a desired location transparent or opaque by controlling the transmittance of light and acts as a display that can present various colorful characters and images in real time. Therefore, it is expected to be highly convenient for users.

13.
ACS Appl Mater Interfaces ; 13(34): 41046-41055, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402614

RESUMO

Barcodes are utilized for product information management in shops, offices, hospitals, passenger facilities, and factories because they enable substantial amounts of data to be processed quickly and accurately. However, a limited amount of information can be loaded on the currently used monochrome barcodes that are based on thin-film coatings. Therefore, these barcodes require constant replacement with new barcodes to update the information; furthermore, they cannot be applied to textile products. This study demonstrated the performance of wearable invisible infrared (IR)-emitting barcodes by using twisted yarns that comprised five highly elastic/conductive spandex fibers. The barcode information can be actively updated via the selective IR emission from specific yarns of the barcode by controlling the applied voltage to the IR-emitting yarns. Therefore, the IR barcode required a relatively small number of bars to express a higher volume of information compared to the existing monochrome barcodes. Because the emitted IR light from the yarns was invisible to the human eye and was only recognized by an IR camera, the information-variable IR-emitting yarn-based barcode exhibited an aesthetic design and was composed of a sustainable fabric-type material that could be easily applied to clothes, bags, and shoes. It is expected that the fabricated barcode will be widely utilized as wearable invisible barcodes, whose information will remain invisible to humans and can be updated in real time to ensure information fluidity.

14.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513938

RESUMO

Plastics are used in cover substrates for billboards, windows, large LED signboards, lighting devices, and solar panels because they are transparent and can be colored and shaped as desired. However, when plastic cover substrates installed in outdoor environments are constantly exposed to harsh conditions such as snow, rain, dust, and wind, their transparency deteriorates owing to watermarks and dust contamination. Herein, we investigated a simple dipping-press coating method that can impart hydrophobicity while maintaining the transparency, regardless of the plastic substrate type. A highly transparent and hydrophobic coating film was formed on a plastic substrate by a two-step process, as follows: (1) application of a polydimethylsiloxane-octadecylamine coating by a dipping process, and (2) embedding (1H,1H,2H,2H-heptadecafluorodec-1-yl) phosphonic acid-aluminum oxide nanoparticles by a thermal press process. The plastic substrates on which the highly transparent and hydrophobic coating film was formed showed 150° or higher hydrophobicity and 80% or higher visible light transparency. The coating method proposed herein can easily impart hydrophobicity and is compatible with any plastic substrate that must maintain prolonged transparency without contamination when exposed to adverse conditions.

15.
Nanotechnology ; 21(25): 255201, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20516577

RESUMO

Tunable-white-light-emitting materials are developed by combining two single-crystal oxide nanowire materials-ZnO and SnO(2)-having different light emissions. The tuning of white-light emission from cool white to warm white is achieved for the first time by adjusting the growth sequence and growth time of the ZnO and SnO(2) nanowires. Combined ZnO:SnO(2) nanowire arrays yield a desired emission color from (0.30, 0.31) to (0.35, 0.37) and a white luminescence of approximately 100 cd m(-2), whose reproducibility can be controlled accurately. These results pave a new way to understand and generate a desired white-light emission, which is a key technology in large-area planar display devices, including flexible and/or transparent display devices.

16.
Polymers (Basel) ; 12(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784728

RESUMO

Flexible fibers composed of a conductive material mixed with a polymer matrix are useful in wearable electronic devices. However, the presence of the conductive material often reduces the flexibility of the fiber, while the conductivity may be affected by environmental factors such as water and moisture. To address these issues, we developed a new conductive fiber by mixing carbon nanotubes (CNT) with a polyurethane (PU) matrix. A silane ((heptadecafluoro-1,1,2,2-tetra-hydrodecyl)trichlorosilane) was added to improve the strain value of the fiber from 155% to 228%. Moreover, silica aerogel particles were embedded on the fiber surface to increase the water contact angle (WCA) and minimize the effect of water on the conductivity of the fiber. As a result, the fabricated PU-CNT-silane-aerogel composite microfiber maintained a WCA of ~140° even after heating at 250 °C for 30 min. We expect this method of incorporating silane and aerogel to help the development of conductive fibers with high flexibility that are capable of stable operation in wet or humid environments.

17.
Polymers (Basel) ; 12(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081225

RESUMO

With the increasing trend of high-rise, large-scale, and functional modern architectural structures, lightweight aggregate (LWA) concrete that exhibits excellent strength and high functionality has garnered active research attention. In particular, as the properties of concrete vary considerably with the raw materials and the proportions of aggregates in the mix, in-depth research on weight reduction, strength improvement, and functional enhancements of aggregates is crucial. This study used the negative pressure coating of a mixed solution comprising epoxy (mixture of epoxy resin and crosslinker), hyper-crosslinked polymer, and titanium oxide (TiO2) nanoparticles on the LWA, and achieved an improvement in the strength of the LWA as well as a reduction in air pollutants such as NOx and SOx. Compared to a normal LWA with an aggregate impact value (AIV) of 38.7%, the AIV of the proposed epoxy-TiO2-embedded high-strength functional LWA was reduced by approximately half to 21.1%. In addition, the reduction rates of NOx and SOx gases resulting from the photocatalytic properties of TiO2 nanoparticles coated with epoxy were approximately 90.9% and 92.8%, respectively. Epoxy-TiO2, embedded in LWAs through a mixture, exhibited stability, high strength, and a reduction in air pollutant characteristics, despite repeated water washing. The LWA proposed herein offers excellent structural and functional properties and is expected to be used in functional lightweight concrete that can be practically applied in high-rise and large-scale architectural structures.

18.
Nat Commun ; 10(1): 4334, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551492

RESUMO

As advancements in science and technology, such as the Internet of things, smart home systems, and automobile displays, become increasingly embedded in daily life, there is a growing demand for displays with customized sizes and shapes. This study proposes a pen drawing display technology that can realize a boardless display in any form based on the user's preferences, without the usual restrictions of conventional frame manufacturing techniques. An advantage of the pen drawing method is that the entire complex fabrication process for the display is encapsulated in a pen. The display components, light-emitting layers, and electrodes are formed using felt-tip drawing pens that contain the required solutions and light-emitting materials. The morphology and thickness of each layer is manipulated by adjusting the drawing speed, number of drawing cycles, and substrate temperature. This study is expected to usher in the upcoming era of customized displays that can reflect individual user needs.

19.
ACS Appl Mater Interfaces ; 11(38): 35286-35293, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31386334

RESUMO

In nature, many cells possess cilia that provide them with motor or sensory functions, allowing organisms to adapt to their environment. The development of artificial cilia with identical or similar sensory functions will enable high-performance and flexible sensing. Here, we investigate a method of producing artificial cilia composed of various polymer materials, such as polyethylene terephthalate, polyurethane, poly(methyl methacrylate), polyvinylpyrrolidone, polystyrene, polyvinyl chloride, and poly (allylamine hydrochloride), using a field effect spinning (FES) method. Unlike wet- or electro-spinning, in which single or multiple strands of fibers are pulled without direction, the FES method can grow fiber arrays vertically and uniformly on a substrate in cilia-like patterns. The lengths and diameters of the vertically grown artificial cilia can be controlled by the precursor polymer concentration in the solution, applied electric current and voltage, and shape and size of the needle tip used for FES. The red, green, and blue emission characteristics of the polymer-quantum dot-based self-emitting artificial cilia prepared in polymer-inorganic nanoparticle hybrid form were determined. In addition, an artificial cilia-based humidity sensor made of the polymer-polymer composite was fabricated.

20.
ACS Appl Mater Interfaces ; 11(15): 14296-14304, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30945850

RESUMO

An invisibility cloak based on visible rays with a refractive index similar to that of air can effectively conceal people or objects from human eyes. However, even if an invisibility cloak based on visible rays is used, an infrared (IR) thermography camera can detect the heat (thermal radiation) emitted from different types of objects including living things. Therefore, both visible and IR rays should be shielded using an invisibility cloak produced by an appropriate technology. Herein, we developed a textile cloak that can almost completely conceal people or objects from IR vision. If a person or object is covered with an IR- and thermal-radiation-shielding textile woven with polyurethane (PU)-tin oxide (SnO2) composite microtubes, serving as an IR invisibility cloak, IR and thermal radiation emitted from the person or object can be simultaneously blocked. Furthermore, the IR- and thermal-radiation-shielding characteristics could be improved further by filling the core of the PU-SnO2 composite microtubes with heat-absorbing materials such as water and paraffin oil in place of air. In addition, the external surface of the IR- and thermal-radiation-shielding textile serving as an IR-reflecting cloak can be waterproofed to enable certain IR- and thermal-radiation-shielding functions under various environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA