RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently has no cure. Identifying biochemical changes associated with neurodegeneration prior to symptom onset, will provide insight into the biological mechanisms associated with neurodegenerative processes, that may also aid in identifying potential drug targets. The current study therefore investigated associations between plasma neurofilament light chain (NF-L), a marker of neurodegeneration, with plasma metabolites that are products of various cellular processes. Plasma NF-L, measured by ultrasensitive Single molecule array (Simoa) technology (Quanterix) and plasma metabolites, measured by mass-spectrometry (AbsoluteIDQ® p400HR kit, BIOCRATES), were assessed in the Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohort comprising 100 cognitively normal older adults. Metabolites belonging to biogenic amine (creatinine, symmetric dimethylarginine, asymmetric dimethylarginine; ADMA, kynurenine, trans-4-hydroxyproline), amino acid (citrulline, proline, arginine, asparagine, phenylalanine, threonine) and acylcarnitine classes were observed to have positive correlations with plasma NF-L, suggesting a link between neurodegeneration and biological pathways associated with neurotransmitter regulation, nitric oxide homoeostasis, inflammation and mitochondrial function. Additionally, after stratifying participants based on low/high brain amyloid-ß load (Aß ±) assessed by positron emission tomography, while creatinine, SDMA and citrulline correlated with NF-L in both Aß- and Aß+ groups, ADMA, proline, arginine, asparagine, phenylalanine and acylcarnitine species correlated with NF-L only in the Aß+ group after adjusting for confounding variables, suggesting that the association of these metabolites with neurodegeneration may be relevant to AD-related neuropathology. Metabolites identified to be associated with plasma NF-L may have the potential to serve as prognostic markers for neurodegenerative diseases, however, further studies are required to validate the current findings in an independent cohort, both cross-sectionally and longitudinally.
Assuntos
Doenças Neurodegenerativas/sangue , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/análise , Aminas Biogênicas/metabolismo , Biomarcadores/análise , Cognição , Estudos de Coortes , Encefalite/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/psicologia , Proteínas de Neurofilamentos/análise , Neurotransmissores/metabolismo , Óxido Nítrico/metabolismo , Tomografia por Emissão de Pósitrons , PrognósticoRESUMO
BACKGROUND AND OBJECTIVE: Aberrant lipid metabolism has been implicated in sporadic Alzheimer's disease (AD). The current study investigated plasma phospholipid and sphingolipid profiles in individuals carrying PSEN1 mutations responsible for autosomal dominant AD (ADAD). METHODS: Study participants evaluated were from the Perth and Melbourne sites of the Dominantly Inherited Alzheimer Network (DIAN) study. Plasma phospholipid and sphingolipid profiles were measured using liquid chromatography coupled with mass spectrometry in 20 PSEN1 mutation carriers (MC; eight of whom were symptomatic and twelve asymptomatic, based on Clinical Dementia Rating scores) and compared with six non carriers (NC) using linear mixed models. Further, AD gold standard biomarker data obtained from the DIAN database were correlated with lipid species significantly altered between MC and NC, using Spearman's correlation coefficient. RESULTS: One-hundred and thirty-nine plasma phospholipid and sphingolipid species were measured. Significantly altered species in MC compared to NC primarily belonged to choline and ethanolamine containing phospholipid classes and ceramides. Further phosphatidylcholine species (34:6, 36:5, 40:6) correlated with cerebrospinal fluid tau (pâ< â0.05), and plasmalogen ethanolamine species (34:2, 36:,4) correlated with both cerebrospinal fluid tau and brain amyloid load within the MC group (pâ< â0.05). CONCLUSION: These findings indicate altered phospholipid and sphingolipid metabolism in ADAD and provide insight into the pathomolecular changes occurring with ADAD pathogenesis. Further, findings reported in this study allow comparison of lipid alterations in ADAD with those reported previously in sporadic AD. The findings observed in the current pilot study warrant validation in the larger DIAN cohort.