Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108183

RESUMO

The unprecedented increase in microbial resistance rates to all current drugs raises an acute need for the design of more effective antimicrobial strategies. Moreover, the importance of oxidative stress due to chronic inflammation in infections with resistant bacteria represents a key factor for the development of new antibacterial agents with potential antioxidant effects. Thus, the purpose of this study was to bioevaluate new O-aryl-carbamoyl-oxymino-fluorene derivatives for their potential use against infectious diseases. With this aim, their antimicrobial effect was evaluated using quantitative assays (minimum inhibitory/bactericidal/biofilms inhibitory concentrations) (MIC/MBC/MBIC), the obtained values being 0.156-10/0.312-10/0.009-1.25 mg/mL), while some of the involved mechanisms (i.e., membrane depolarization) were investigated by flow cytometry. The antioxidant activity was evaluated by studying the scavenger capacity of DPPH and ABTS•+ radicals and the toxicity was tested in vitro on three cell lines and in vivo on the crustacean Artemia franciscana Kellog. The four compounds derived from 9H-fluoren-9-one oxime proved to exhibit promising antimicrobial features and particularly, a significant antibiofilm activity. The presence of chlorine induced an electron-withdrawing effect, favoring the anti-Staphylococcus aureus and that of the methyl group exhibited a +I effect of enhancing the anti-Candida albicans activity. The IC50 values calculated in the two toxicity assays revealed similar values and the potential of these compounds to inhibit the proliferation of tumoral cells. Taken together, all these data demonstrate the potential of the tested compounds to be further used for the development of novel antimicrobial and anticancer agents.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
2.
Molecules ; 27(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566083

RESUMO

The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation reaction was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were screened for their in vitro antibacterial activity against planktonic cells and also for their anti-biofilm effect, using Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The cytotoxic activity of the novel compounds was tested against HeLa cells. The pharmacokinetic and pharmacodynamic profiles of carprofen derivatives, as well as their toxicity, were established by in silico analyses.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos/química , Antibacterianos/farmacologia , Carbazóis , Escherichia coli , Células HeLa , Humanos , Testes de Sensibilidade Microbiana
3.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299440

RESUMO

(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer's disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N'-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.


Assuntos
Carbazóis/química , Bases de Schiff/química , Bases de Schiff/síntese química , Aldeídos/química , Antibacterianos/farmacologia , Carbazóis/síntese química , Carbazóis/farmacologia , Quimioinformática/métodos , Biologia Computacional/métodos , Glucosamina/química , Estrutura Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
4.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070126

RESUMO

Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Fluorenos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fluorenos/química , Fungos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Magnetometria , Testes de Sensibilidade Microbiana , Plâncton/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198306

RESUMO

Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, ß-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of ß-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop ß-lactamase inhibitors (BLIs) capable of restoring the activity of ß-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of ß-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , beta-Lactamases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Animais , Bacteriófagos , Sistemas CRISPR-Cas , Carbapenêmicos/farmacologia , Enterobacter/efeitos dos fármacos , Enterobacter/enzimologia , Enterococcus/efeitos dos fármacos , Enterococcus/enzimologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Vacinação , Inibidores de beta-Lactamases/farmacologia
6.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708236

RESUMO

Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/síntese química , Antituberculosos/química , Hidrazinas/síntese química , Oxidiazóis/síntese química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Arilamina N-Acetiltransferase/metabolismo , Benzoatos/química , Ácidos Carboxílicos/química , Avaliação Pré-Clínica de Medicamentos , Fase G1/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazinas/farmacologia , Isoniazida/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , RNA Mensageiro/efeitos dos fármacos
7.
Molecules ; 25(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218209

RESUMO

The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Tioureia/análogos & derivados , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ligantes , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Eletricidade Estática , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia
8.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941125

RESUMO

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a-j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a-j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


Assuntos
Anti-Infecciosos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Simulação por Computador , Oximas , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Humanos , Oximas/química , Oximas/farmacologia
9.
Molecules ; 25(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936505

RESUMO

In this paper, we aimed to exploit and combine in the same molecule the carbazole and the 1,3,4-oxadiazole pharmacophores, to obtain novel carprofen derivatives, by using two synthesis pathways. For the first route, the following steps have been followed: (i) (RS)-2-(6-chloro-9H-carbazol-2-yl)propanonic acid (carprofen) treatment with methanol, yielding methyl (RS)-2-(6-chloro-9H-carbazol-2-yl)propanoate; (ii) the resulted methylic ester was converted to (RS)-2-(6-chloro-9H-carbazol-2-yl)propane hydrazide (carprofen hydrazide) by treatment with hydrazine hydrate; (iii) reaction of the hydrazide derivative with acyl chlorides led to N-[(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanoil]-N'-R-substituted-benzoylhydrazine formation, which; (iv) in reaction with phosphorus oxychloride gave the (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-(1,3,4-oxadiazol-2-yl)ethane derivatives. In the second synthesis pathway, new 1,3,4-oxadiazole ring compounds were obtained starting from carprofen which was reacted with isoniazid, in the presence of phosphorus oxychloride to form (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-[5-(4-pyridyl)-1,3,4-oxadiazol-2-yl]ethane. The synthesized compounds were characterized by IR, 1H-NMR and 13C-NMR, screened for their drug-like properties and evaluated for in vitro cytotoxicity and antimicrobial activity. The obtained compounds exhibited a good antimicrobial activity, some of the compounds being particularly active on E. coli, while others on C. albicans. The most significant result is represented by their exceptional anti-biofilm activity, particularly against the P. aeruginosa biofilm. The cytotoxicity assay revealed that at concentrations lower than 100 µg/mL, the tested compounds do not induce cytotoxicity and do not alter the mammalian cell cycle. The new synthesized compounds show good drug-like properties. The ADME-Tox profiles indicate a good oral absorption and average permeability through the blood brain barrier. However, further research is needed to reduce the predicted mutagenic potential and the hepatotoxicity.


Assuntos
Antibacterianos/química , Anti-Infecciosos/química , Carbazóis/química , Oxidiazóis/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Carbazóis/síntese química , Carbazóis/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Relação Estrutura-Atividade
10.
Molecules ; 19(8): 12011-30, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25120054

RESUMO

Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies.


Assuntos
Antibacterianos/química , Benzamidas/química , Biofilmes/efeitos dos fármacos , Compostos de Ferro/química , Polivinil/química , Pirrolidinas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Benzamidas/síntese química , Benzamidas/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Compostos de Ferro/farmacologia , Espectroscopia de Ressonância Magnética , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Polivinil/síntese química , Polivinil/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
11.
Antibiotics (Basel) ; 13(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247634

RESUMO

Microorganisms participating in the development of biofilms exhibit heightened resistance to antibiotic treatment, therefore infections involving biofilms have become a problem in recent years as they are more difficult to treat. Consequently, research efforts are directed towards identifying novel molecules that not only possess antimicrobial properties but also demonstrate efficacy against biofilms. While numerous investigations have focused on antimicrobial capabilities of Schiff bases, their potential as antibiofilm agents remains largely unexplored. Thus, the objective of this article is to present a comprehensive overview of the existing scientific literature pertaining to small molecules categorized as Schiff bases with antibiofilm properties. The survey involved querying four databases (Web of Science, ScienceDirect, Scopus and Reaxys). Relevant articles published in the last 10 years were selected and categorized based on the molecular structure into two groups: classical Schiff bases and oximes and hydrazones. Despite the majority of studies indicating a moderate antibiofilm potential of Schiff bases, certain compounds exhibited a noteworthy effect, underscoring the significance of considering this type of molecular modeling when seeking to develop new molecules with antibiofilm effects.

12.
Eur J Med Chem ; 269: 116268, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460268

RESUMO

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Mycobacterium tuberculosis , Tuberculose , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Anti-Infecciosos/uso terapêutico
13.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675368

RESUMO

Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 µg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.

14.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534647

RESUMO

N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N'-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains.

15.
Antibiotics (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237710

RESUMO

New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 µg/mL and 0.0521 µg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 µg/mL-40 µg/mL. The precision and accuracy of the analytical method were within 98-102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities.

16.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680749

RESUMO

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Assuntos
Anti-Inflamatórios não Esteroides , Cloro , Bromo , Antioxidantes/farmacologia , Reposicionamento de Medicamentos , Anti-Inflamatórios , Carbazóis/farmacologia , Antibacterianos/farmacologia , Biofilmes
17.
Pharmaceutics ; 15(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896261

RESUMO

The present study aimed to synthesize, characterize, and validate a separation and quantification method of new N-acyl thiourea derivatives (1a-1o), incorporating thiazole or pyridine nucleus in the same molecule and showing antimicrobial potential previously predicted in silico. The compounds have been physiochemically characterized by their melting points, IR, NMR and MS spectra. Among the tested compounds, 1a, 1g, 1h, and 1o were the most active against planktonic Staphylococcus aureus and Pseudomonas aeruginosa, as revealed by the minimal inhibitory concentration values, while 1e exhibited the best anti-biofilm activity against Escherichia coli (showing the lowest value of minimal inhibitory concentration of biofilm development). The total antioxidant activity (TAC) assessed by the DPPH method, evidenced the highest values for the compound 1i, followed by 1a. A routine quality control method for the separation of highly related compounds bearing a chlorine atom on the molecular backbone (1g, 1h, 1i, 1j, 1m, 1n) has been developed and validated by reversed-phase high-performance liquid chromatography (RP-HPLC), the results being satisfactory for all validation parameters recommended by the ICH guidelines (i.e., system suitability, specificity, the limits of detection and quantification, linearity, precision, accuracy and robustness) and recommending it for routine separation of these highly similar compounds.

18.
Int J Mol Sci ; 13(10): 12584-97, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23202915

RESUMO

The purpose of this study was to design a new nanosystem for catheter surface functionalization with an improved resistance to Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853 colonization and subsequent biofilm development. New 2-((4 ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl)-benzamides were synthesized and used for coating a core/shell nanostructure. Their chemical structures were elucidated by NMR, IR and elemental analysis, being in agreement with the proposed ones. Fe(3)O(4)/C(12 )of up to 5 nm size had been synthesized with lauric acid as a coating agent and characterized by XRD, FT-IR, TGA, TEM and biological assays. The catheter pieces were coated with the fabricated nanofluid in magnetic field. The microbial adherence ability was investigated in 6 multiwell plates by using culture based methods and Scanning Electron Microscopy (SEM). The nanoparticles coated with the obtained compounds 1a-c inhibited the adherence and biofilm development ability of the S. aureus and P. aeruginosa tested strains on the catheter functionalized surface, as shown by the reduction of viable cell counts and SEM examination of the biofilm architecture. Using the novel core/shell/adsorption-shell to inhibit the microbial adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with improved anti-biofilm properties.


Assuntos
Benzamidas/química , Nanoestruturas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Benzamidas/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Tioureia/análogos & derivados , Tioureia/farmacologia
19.
Int J Mol Sci ; 12(10): 6432-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22072897

RESUMO

In this paper we present the antimicrobial activity of some newly synthesized dibenz[b,e]oxepin derivatives bearing the oximino moiety, and fluorine (F) and trifluoromethyl (CF(3)) group substituents. The chemical structure and purity of the new compounds were assessed by using elemental analysis, NMR and FTIR spectroscopy. The new compounds were screened for their antibacterial activity towards Gram-positive and Gram-negative strains, by qualitative and quantitative assays. Our results demonstrated that the CF(3) and F disubstituted compounds could be considered for the further development of novel antimicrobial drugs.


Assuntos
Antibacterianos/química , Flúor/química , Oxepinas/química , Oximas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Oximas/síntese química , Oximas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Molecules ; 16(9): 7593-607, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21900862

RESUMO

A number of acylthioureas, 2-((4-methylphenoxy)methyl)-N-(aryl-carbamothioyl)benzamides (aryl = 3,5-dichlorophenyl, 2,3-dichlorophenyl, 3,4-dichloro-phenyl, 2,4,5-trichlorophenyl, 3,4,5-trichlorophenyl, 2-bromophenyl, 2,4-dibromophenyl, 2,5-dibromophenyl, 2-iodophenyl, 3-fluorophenyl, 2,3,4-trifluorophenyl, 2,4,5-trifluoro-phenyl, 2,4,6-trifluorophenyl) have been synthesized, characterized by elemental analysis, IR and NMR spectroscopy and tested for their interaction with bacterial cells in free and adherent state. The anti-pathogenic activity was correlated with the presence of one iodine, bromide or fluorine, and two or three chloride atoms on the N-phenyl substituent of the thiourea moiety, being significant especially on Pseudomonas aeruginosa and Staphylococcus aureus strains, known for their ability to grow in biofilms. Our results demonstrate the potential of these derivatives for further development of novel anti-microbial agents with antibiofilm properties.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Tioureia/análogos & derivados , Tioureia/síntese química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA