Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891551

RESUMO

This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.

2.
Int J Pharm ; 628: 122272, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36220589

RESUMO

The goal of this study was to develop a 3D-printed bento box model (3D-printed BB) with one or two chambers containing propranolol hydrochloride (PNL) as powder and matrix tablet for controlled drug release at varying times using United States Pharmacopeia (USP) dissolution guidelines. The 3D-printed BBs were made with commercial polyvinyl alcohol filament and a fused deposition modeling (FDM) 3D printer, with varying infill percentages and wall thicknesses. The physicochemical properties of the 3D-printed BBs, including appearance, thickness, size, weight, hardness, swelling, and erosion properties were investigated. The surface and cross-section morphologies of the 3D-printed BBs were characterized using a FESEM. According to FESEM images, the different infill percentages had a significant effect on the internal structure of the 3D-printed BBs' caps, but a minor effect on the internal structure of their walls. PNL release from the 3D-printed BB began in a pH 1.2 medium, followed by drug release in a pH 6.8 medium. Some formulations of 3D-printed BB could achieve a drug release percentage within all the ranges specified by USP dissolution guidelines. 3D-printed BBs, therefore, have the potential to revolutionize the future of the pharmaceutical industry by facilitating control of the amount of drugs released at predetermined intervals.


Assuntos
Propranolol , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Solubilidade , Tecnologia Farmacêutica/métodos , Impressão Tridimensional , Comprimidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA