RESUMO
BACKGROUND: The study aimed to develop and validate a deep learning-based Computer Aided Triage (CADt) algorithm for detecting pleural effusion in chest radiographs using an active learning (AL) framework. This is aimed at addressing the critical need for a clinical grade algorithm that can timely diagnose pleural effusion, which affects approximately 1.5 million people annually in the United States. METHODS: In this multisite study, 10,599 chest radiographs from 2006 to 2018 were retrospectively collected from an institution in Taiwan to train the deep learning algorithm. The AL framework utilized significantly reduced the need for expert annotations. For external validation, the algorithm was tested on a multisite dataset of 600 chest radiographs from 22 clinical sites in the United States and Taiwan, which were annotated by three U.S. board-certified radiologists. RESULTS: The CADt algorithm demonstrated high effectiveness in identifying pleural effusion, achieving a sensitivity of 0.95 (95% CI: [0.92, 0.97]) and a specificity of 0.97 (95% CI: [0.95, 0.99]). The area under the receiver operating characteristic curve (AUC) was 0.97 (95% DeLong's CI: [0.95, 0.99]). Subgroup analyses showed that the algorithm maintained robust performance across various demographics and clinical settings. CONCLUSION: This study presents a novel approach in developing clinical grade CADt solutions for the diagnosis of pleural effusion. The AL-based CADt algorithm not only achieved high accuracy in detecting pleural effusion but also significantly reduced the workload required for clinical experts in annotating medical data. This method enhances the feasibility of employing advanced technological solutions for prompt and accurate diagnosis in medical settings.