Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ultrason Imaging ; 37(4): 294-311, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25628094

RESUMO

To increase the contrast-to-tissue ratio (CTR) in contrast imaging or the signal-to-noise ratio (SNR) in tissue harmonic imaging, many multipulse transmission techniques have been suggested. This article first recalls the various imaging techniques proposed in the literature and then presents a mathematical background to synthesize and generalize most of the multipulse ultrasound imaging techniques. The formulation presented can be used to predict the relative amplitude of the nonlinear components in each frequency band and to design new transmission sequences to either increase or decrease specified nonlinear components in each harmonic band. Simulation results on several multipulse techniques agree with the results from previous studies.


Assuntos
Meios de Contraste , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
2.
Artigo em Inglês | MEDLINE | ID: mdl-30136938

RESUMO

Contrast-enhanced-super-resolution ultrasound imaging, also referred to as ultrasound localization microscopy, can resolve vessels that are smaller than the diffraction limit and has recently been able to generate super-resolved vascular images of shallow in vivo structures in small animals. To fully translate this technology to the clinic, it is advantageous to be able to detect microbubbles at deeper locations in tissue while maintaining a short acquisition time. Current implementations of this imaging method rely on plane-wave imaging. This method has the advantage of maximizing the frame rate, which is important due to the large amount of frames required for super-resolution processing. However, the wide planar beam used to illuminate the field of view produces poor contrast and low sensitivity bubble detection. Here, we propose an "adaptive multifocus" sequence, a new ultrasound imaging sequence that combines the high frame rate feature of a plane wave with the increased bubble detection sensitivity of a focused beam. This sequence simultaneously sonicates two or more foci with a single emission, hence retaining a high frame rate, yet achieving improved sensitivity to microbubbles. In the limit of one target, the beam reduces to a conventional focused transmission; and for an infinite number of targets, it converges to plane-wave imaging. Numerical simulations, using the full-wave code, are performed to compare the point spread function of the proposed sequence to that generated by the plane-wave emission. Our numerical results predict an improvement of up to 15 dB in the signal-to-noise ratio. Ex vivo experiments of a tissue-embedded microtube phantom are used to generate super-resolved images and to compare the adaptive beamforming approach to plane-wave imaging. These experimental results show that the adaptive multifocus sequence successfully detects 744 microbubble events at 60 mm when they are undetectable by the plane-wave sequence under the same imaging conditions. At a shallower depth of 44 mm, the proposed adaptive multifocus method detects 6.9 times more bubbles than plane-wave imaging (1763 versus 257 bubble events).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos , Abdome/diagnóstico por imagem , Animais , Meios de Contraste , Bases de Dados Factuais , Feminino , Humanos , Microbolhas , Músculos/diagnóstico por imagem , Imagens de Fantasmas , Suínos
3.
Theranostics ; 8(1): 141-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290798

RESUMO

Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. Methods A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. Results The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. Conclusion This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Imagem Molecular/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese , Animais , Carcinoma de Células Renais/genética , Meios de Contraste , Feminino , Imuno-Histoquímica , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/genética , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
4.
Ultrasound Med Biol ; 43(10): 2488-2493, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28668636

RESUMO

Ultrasound contrast-enhanced super-resolution imaging has recently attracted attention because of its extraordinary ability to image vascular features much smaller than the ultrasound diffraction limit. This method requires sensitive detection of separable microbubble events despite a noisy tissue background to indicate the microvasculature, and any approach that could improve the sensitivity of the ultrasound system to individual microbubbles would be highly beneficial. In this study, we evaluated the effect of varying microbubble size on super-resolution imaging sensitivity. Microbubble preparations were size sorted into different mean diameters and then were imaged at equal concentrations. Commercially manufactured Definity and Optison were also imaged for comparison. Both in vitro experiments in phantom vessels and in vivo experiments imaging rat tumors revealed that the sensitivity of contrast-enhanced super-resolution imaging can be improved by using microbubbles with a larger diameter.


Assuntos
Meios de Contraste , Fibrossarcoma/diagnóstico por imagem , Aumento da Imagem/métodos , Microbolhas , Microvasos/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Fibrossarcoma/irrigação sanguínea , Tamanho da Partícula , Imagens de Fantasmas , Ratos , Ratos Endogâmicos F344
5.
Theranostics ; 7(1): 196-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042327

RESUMO

Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself.


Assuntos
Fibrossarcoma/patologia , Imageamento Tridimensional/métodos , Microscopia/métodos , Microvasos/patologia , Neovascularização Patológica , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Projetos Piloto , Ratos Endogâmicos F344
6.
Artigo em Inglês | MEDLINE | ID: mdl-24081255

RESUMO

In ultrasound contrast imaging, many techniques based on multiple transmissions have been proposed to increase the contrast-to-tissue ratio (CTR). They are generally based on the response of static scatterers inside the imaged region. However, scatterer motion, for example in blood vessels, has an inevitable influence on multi-pulse techniques, which can either enhance or degrade the technique involved. This paper investigates the response of static nonlinear media insonated by multi-pulses with various phase shifts, and the influence of scatterer motion on multi-pulse techniques. Simulations and experimental results from a single bubble and clouds of bubbles show that the phase shift of the echoes backscattered from bubbles is dependent on the transmissions' phase shift, and that the bubble motion influences the efficiency of multi-pulse techniques: fundamental and second-harmonic amplitudes of the processed signal change periodically, exhibiting maximum or minimum values, according to scatterer motion. Furthermore, experimental results based on the second-harmonic inversion (SHI) technique reveal that bubble motion can be taken into account to regulate the pulse repetition frequency (PRF). With the optimal PRF, the CTR of SHI images can be improved by about 12 dB compared with second-harmonic images.


Assuntos
Meios de Contraste/química , Microbolhas , Movimento (Física) , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Vasos Sanguíneos/diagnóstico por imagem , Simulação por Computador , Humanos , Modelos Biológicos , Imagens de Fantasmas , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA