Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Opt Express ; 32(12): 21281-21292, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859486

RESUMO

For weak coherent single-photon secure data communication among short-reach metropolitan intra-/inter-city networks at the O-band (1250-1350 nm), the commercially available semiconductor laser sources are emerging but still suffering from high single-mode-fiber (SMF) loss, broad linewidth, and unstable wavelength. To overcome such disadvantages for enabling the efficient phase-coding link with sufficient secure key rate, a specifically designed adiabatic package with active temperature-/current-feedback control is proposed for the paired O-band MHz-linewidth master-to-slave injection-locked DFBLDs and a polarization-maintaining 1-bit-delay interferometer is stabilized with using a passively adiabatic cell to achieve accurate differential phase decoding. Even though, the phonon-induced phase fluctuation still occurs at rising and falling edges of the decoded long-pattern secure data bits delivered from the slave DFBLD, which is mainly attributed to the intra-cavity heating under excessive free-carrier generation via the master DFBLD injection. To stabilize the differential-phase-shift (DPS) keying protocol, the phase-code distortion caused by over-injection-induced Auger heating is effectively suppressed by reducing the overly biased injection with precise master-injection-level control. The rising-/falling-edge damping distortion of the phase-shift-encoded secure bit-stream envelope is suppressed by appropriately decreasing the DC bias current and adjusting the AC encoding amplitude of the master DFBLD. Such operation reduces the incorrect π phase shift in the injection-locked slave DFBLD biased at optimized below-threshold DC offset, thus allowing single-photon DPS-keying data transmission over 15-km SMF with slightly increasing the single-photon bit-error ratio from <3% (0-km) to 6.2% (15-km).

2.
Opt Express ; 30(21): 38663-38673, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258425

RESUMO

Shortening pulse width can improve the power efficiency and data rate of a pulse position modulation (PPM) based underwater wireless optical communication (UWOC) system at a fixed average optical power, which is more suitable for the energy-limited underwater environment. As a common method to generate short pulses, gain switching has the advantages of a tunable switching frequency and simple structure, facilitating the generation of high-order PPM signals. However, the output characteristics of electrical gain switching seriously affect the demodulation of PPM signals and limit the data rate. To study the performance of gain switching on a PPM communication system, simulation models of the semiconductor laser diode and the driving circuit are built to describe the generation of electrical and optical pulses. The pulse width, pulse peak value, and peak position of optical pulses are analyzed under different symbol durations and PPM orders. Furthermore, a 64-PPM/150-Mbps UWOC system with a 200-ps optical pulse width is demonstrated by using a gain-switched blue GaN-based laser diode in a water tank. The peak average power ratio (PAPR) is 19.5 dB. Via the statistical analysis of experiment results and the output characteristics of electrical gain switching, the main factor limiting the data rate attributes to the time delay fluctuation of gain switching. To the best of our knowledge, this is the first time that gain switching has been experimentally demonstrated and analyzed in a high-order PPM based UWOC system.

3.
Opt Express ; 30(10): 17130-17139, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221542

RESUMO

By collimating the single-mode (SM) vertical-cavity surface-emitting laser (VCSEL) at 850 nm with either the OM4 multi-mode fiber (OM4-MMF) or the graded-index single-mode fiber (GI-SMF) with lensed end-face, the directly encoded non-return-to-zero on-off keying (NRZ-OOK) data transmission performance is characterized when tilting the coupling angle with respect to the surface normal of the SM-VCSEL. In comparison with the lensed OM4-MMF and lensed SMF coupling, the lensed OM4-MMF collimator shows a large coupling angle tolerance with the coupling efficiency only degraded by 5% when enlarging the tilted angle from 0° to 10°. In contrast, the lensed GI-SMF collimator attenuates the coupled SM-VCSEL output by more than 50% when tilting the coupling angle up to 10°. For the lensed OM4-MMF coupling, the receivable NRZ-OOK data rate in BtB and after 100-m OM4-MMF cases can achieve 50 Gbit/s with its corresponding BER degraded from 6.5 × 10-10 to 8.8 × 10-10 when enlarging its tilting angle ranged from 0° to 10°. By changing the collimator to the lensed SMF, the decoded BER significantly degrades from 5.8 × 10-5 to 1.2 × 10-1 when coupling and transmitting the NRZ-OOK data at 50 Gbit/s. Owing to the low coupling efficiency via the lensed SMF collimator, the error-free NRZ-OOK data rate under the lensed SMF coupling somewhat decreases to 35 Gbit/s in the BtB link and to 32 Gbit/s after the 100-m GI-SMF link with allowable coupling angle tilted from 0° to 4°. This work confirms the applicability of the lensed MMF or SMF collimator for coupling the SM-VCSEL output with a relatively large tolerance on the tilting angle with respect to the surface normal of the SM-VCSEL.

4.
Macromol Rapid Commun ; 43(8): e2100854, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35254691

RESUMO

Photodetectors based on reduced graphene oxide (rGO) have attracted much attention owing to their simple and low-cost fabrication process. However, the aggregation and defects of rGO flakes still limit the performance of rGO photodetectors. Controlling the composition of rGO has become a vital factor for its prospective applications. For example, the interconnection between rGO and polymers for modified morphologies of rGO films leads to an enhanced performance of devices. In this work, a practical approach to engineer surface uniformity and enhance the performance of a photodetector by modifying the rGO film with hydrophilic polymers poly(vinyl alcohol) (PVA) is reported. Compared with the rGO photodetector, the on/off ratio for the PVA/rGO photodetector shows 3.5 times improvement, and the detectivity shows 53% enhancement even when the photodetector is operated at a low bias of 0.3 V. This study provides an effective route to realize PVA/rGO photodetectors with a low-power operation which shows promising opportunities for the future development of green systems.

5.
Opt Lett ; 46(20): 5189-5192, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653148

RESUMO

Traditional visible light communication (VLC) via light-emitting diodes (LEDs) employs the on-off keying (OOK) modulation scheme. Even though optical frequency modulation has many advantages, it is hardly used for LED VLC because a high carrier frequency cannot be applied to the LED cavity due to the resistance-capacitance limit. Here, by monolithically integrating an LED with an integrated digital transducer, we experimentally demonstrate the intermixing of gigahertz surface acoustic waves and electrical data signals in the LED cavity at room temperature. An optical transmitter was realized by in situ frequency up-conversion of the data signals from an LED, which has the advantages of improving transmission performance by up-shifting the data spectrum away from low-frequency noise. Our proposed integrated acousto-optic transducer opens a new developing scheme on the frequency up-mixed data encoding of an LED beyond its inherent modulation bandwidth for future VLC.

6.
Opt Lett ; 45(8): 2203-2206, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287194

RESUMO

In this Letter, we report high-speed integrated 14 µm in diameter micro-light-emitting diode (µLED) arrays with the parallel configuration, including ${2} \times {2}$2×2, ${2} \times {3}$2×3, ${2} \times {4}$2×4, and ${2} \times {5}$2×5 arrays. The small junction area of µLED (${\sim}{191}\;\unicode{x00B5}{\rm m}^2$∼191µm2) in each element facilitates the operation of higher injection current density up to ${13}\;{{\rm kA/cm}^2}$13kA/cm2, leading to the highest modulation bandwidth of 615 MHz. The optical power of ${2} \times {5}$2×5 array monotonically increases (${\sim}{10}$∼10 times higher) as the number of arrays increases (1 to 10), while retaining the fast modulation bandwidth. A clear eye diagram up to 1 Gbps without any equalizer further shows the capability of this high-speed transmitter for VLC. These results mean that tailoring the optical power of µLEDs in a parallel-biased integrated array can further enhance the data transmission rate without degradation of the modulation bandwidth.

7.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137887

RESUMO

Visible light communication is an emerging high-speed optical wireless communication technology that can be a candidate to alleviate pressure on conventional radio frequency-based technology. In this paper, for the first time, the advanced modulation format of probabilistic shaping (PS) bit loading is investigated in a high data rate visible light communication system based on a 450-nm Gallium Nitride laser diode. The characteristic of the system is discussed and PS bit loading discrete multi-tone modulation helps to raise the spectral efficiency and improve the system performance. Higher entropy can be achieved in the same signal-to-noise ratio (SNR) and modulation bandwidth limitation, comparing to bit and power loading. With PS bit loading, an available information rate (AIR) of 10.23 Gbps is successfully achieved at the signal bandwidth of 1.5 GHz in a 1.2 m free space transmission with normalized generalized mutual information above 0.92. And higher AIR can be anticipated with an entropy-loading strategy that fixes the channel characteristic. Experimental results validate that a PS bit loading scheme has the potential to increase the system capacity.

8.
Opt Lett ; 44(5): 1158-1161, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821737

RESUMO

To develop an indoor optical wireless communication (OWC) system, both the system complexity/cost and data rate need to be taken into consideration. In this Letter, a cost-efficient half-duplex OWC system for photonic home area network applications is proposed and experimentally demonstrated. A low-cost Fabry-Perot laser diode is proposed to be employed as both the downlink receiver (Rx) and uplink transmitter at the user side. Enabled by the Fabry-Perot transceiver, the indoor transmission of 10 Gbit/s four-level pulse-amplitude-modulation signal for both downlinks and uplinks is experimentally achieved over a 1.7 km single-mode fiber and 1.1 m free space. Moreover, the proposed scheme also enables us to operate an orthogonal frequency division multiplexing (OFDM) signal. The bit error rate levels of multi-gigabit OFDM data for both downlinks and uplinks over a 10 h measurements are all under a 7% forward error correction limit of 3.8×10-3, which indicates that the proposed system is robust and, thus, can provide a promising solution for high-speed low-cost home area OWC networks.

9.
Opt Express ; 26(18): 23397-23410, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184841

RESUMO

Enabling laser white-lighting at a correlated color temperature (CCT) of 6500K with the use of only red/green/blue (RGB) tri-color laser diodes (LDs) is demonstrated, which can further perform wavelength division multiplexing (WDM) communication with a high-spectral-usage 16 QAM-OFDM data stream at 11.2 Gbps over 0.5 m. The sampling rate of encoded data is optimized to avoid the aliasing effect and to effectively amplify the signal with high on/off extinction and modulation depth. Proper oversampling can decrease the peak-to-average power ratio (PAPR) of the OFDM data and filter out unwanted noise. There are also six different diffusers used to diverge the white-light mixed by the RGB LD beam. By analyzing the color-casting transmittance, surface roughness, CCT uniformity, divergent angle of the diffuser, and the data transmission capacity, the frosted glass (FG2.8) diffuser with high transmittance diverges the white light with the divergent angle of ± 20° and supports the highest data rate of 14 Gbps over 0.5 m. To fit the day-light CCT, the blue LD power at an optimized bias current is further attenuated with a 0.6-optical density filter for reducing CCT from 100000K to 6500K; however, such an adjustment also degrades the SNR ratio to sacrifice the achievable data rate of the blue LD. The polycarbonate (PC1.5) diffuser with proper surface roughness diverged white-light exhibits the best CCT uniformity and a divergent angle of ± 30° but supports a data rate of only 6.4 Gbps over 0.5 m. The poly (methyl methacrylate) PMMA1.5 diffuser scatters the white light with the largest angle of ± 40°; however, the data rate also decreases to 4.8 Gbps over 0.5 m.

10.
Opt Express ; 25(14): 16347-16363, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789140

RESUMO

For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 µm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 µm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

11.
Opt Express ; 24(16): 17654-69, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505734

RESUMO

A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

12.
Opt Lett ; 41(20): 4676-4679, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005865

RESUMO

A remote-node heterodyne millimeter-wave radio-over-fiber (MMW-RoF) link was proposed by a dual-mode optical carrier with orthogonal polarizations and single-wavelength modulation, which effectively suppresses the chromatic dispersion and four-wave mixing. For optical wireline transmission, the bit error rate (BER) of a 25-km single-mode fiber (SMF) transmitted baseband 24-Gbit/s 64-QAM OFDM can be improved to 5.9×10-4 with an error vector magnitude (EVM) of 7.1%. Moreover, the beat 35-GHz MMW carrier with a 32-dB carrier-to-noise ratio was generated for wireless transmission. The BER and EVM of passband 8-Gbit/s 16-QAM OFDM at 35-GHz MMW carrier were 3.4×10-3 and 17.1%, respectively, after 25-km SMF and 1.6-m free-space transmissions.

13.
Opt Express ; 23(22): 29065-78, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561176

RESUMO

The pre-compensation on power fading effect of a colorless laser diode (CLD) carried 40-Gbit/s 256-QAM OFDM transmission during 25-km is demonstrated. By offsetting the DC bias to thrice the threshold (I(th)) and increasing the injection to 0 dBm, the CLD not only enhances its coherence but also suppresses modulation throughput declination and reduces the relative intensity related noise floor to -50 dBm. Modeling the receiving power of the delivered 256-QAM OFDM subcarriers is established, indicating that raising the bias to 3I(th) down-shifts the power fading induced notch to 8.8 GHz. This further degrades the OFDM subcarrier peak power by -2.9 dB after 25-km transmission, and the corresponded signal-to-noise ratio (SNR), error vector magnitude (EVM) and bit-error-rate (BER) are 26.1 dB, 4.9% and 6.5 × 10(-3), respectively. Pre-leveling the OFDM subcarrier as well as the modulation throughput effectively compromises the over-bias enlarged power fading to promote transmission. With a pre-leveled power slope of 1.5 dB/GHz for 256-QAM OFDM data, the modulation throughput declination of the high biased CLD significantly mitigates under BtB transmission, enabling the receiving sensitivity at -7.2 dBm with SNR, EVM and BER of 29.9 dB, 3.1% and 1.5 × 10(-4), respectively. Increasing the pre-leveling slope to 3.2 dB/GHz minimizes the fiber dispersion induced power fading, which improves the receiving SNR, EVM and BER to 27.4 dB, 4.2% and 2.6 × 10(-3), respectively, with receiving sensitivity of -3 dBm and power penalty of 4.2 dB after 25-km SMF transmission.

14.
Opt Express ; 23(17): 22691-705, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368237

RESUMO

A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10(-3), respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10(-3), respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10(-3), respectively.

15.
Opt Express ; 23(10): 13051-9, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074558

RESUMO

A TO-38-can packaged Gallium nitride (GaN) blue laser diode (LD) based free-space visible light communication (VLC) with 64-quadrature amplitude modulation (QAM) and 32-subcarrier orthogonal frequency division multiplexing (OFDM) transmission at 9 Gbps is preliminarily demonstrated over a 5-m free-space link. The 3-dB analog modulation bandwidth of the TO-38-can packaged GaN blue LD biased at 65 mA and controlled at 25°C is only 900 MHz, which can be extended to 1.5 GHz for OFDM encoding after throughput intensity optimization. When delivering the 4-Gbps 16-QAM OFDM data within 1-GHz bandwidth, the error vector magnitude (EVM), signal-to-noise ratio (SNR) and bit-error-rate (BER) of the received data are observed as 8.4%, 22.4 dB and 3.5 × 10(-8), respectively. By increasing the encoded bandwidth to 1.5 GHz, the TO-38-can packaged GaN blue LD enlarges its transmission capacity to 6 Gbps but degrades its transmitted BER to 1.7 × 10(-3). The same transmission capacity of 6 Gbps can also be achieved with a BER of 1 × 10(-6) by encoding 64-QAM OFDM data within 1-GHz bandwidth. Using the 1.5-GHz full bandwidth of the TO-38-can packaged GaN blue LD provides the 64-QAM OFDM transmission up to 9 Gbps, which successfully delivers data with an EVM of 5.1%, an SNR of 22 dB and a BER of 3.6 × 10(-3) passed the forward error correction (FEC) criterion.

16.
Opt Express ; 23(17): 22676-90, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368236

RESUMO

The weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) with colorless and channelized mode features is a new-class optical transmitter fulfilling the need of next-generation communications. By packaging the colorless WRC-FPLD transmitter with a 10-GHz transistor-outline-56-can (TO-56-can), the premier demonstration on directly modulated 42-Gbit/s/channel quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) transmission is demonstrated via wavelength injection-locking. Enlarging the injection level effectively up-shifts the relaxation oscillation peak and suppresses the relative intensity noise, which facilitates the TO-56-can packaged WRC-FPLD to improve its modulation throughput bandwidth to 9 GHz and enhance its signal-to-noise ratio to 22 dB. By pre-amplifying the directly modulated QAM-OFDM data with a total raw bit rate of 42 Gbit/s, the receiving bit-error-rate (BER) under back-to-back transmission can be reduced below the forward-error-correction (FEC) limited BER of 3.8 × 10(-3). Such a colorless WRC-FPLD enables the QAM-OFDM transmission over a 25-km long single-mode-fiber based metropolitan access network with its BER matching the FEC criterion at a receiving power of -2 dBm.

17.
Opt Express ; 23(14): 18746-53, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191934

RESUMO

With increasing interest in visible light communication, the laser diode (LD) provides an attractive alternative, with higher efficiency, shorter linewidth and larger bandwidth for high-speed visible light communication (VLC). Previously, more than 3 Gbps data rate was demonstrated using LED. By using LDs and spectral-efficient orthogonal frequency division multiplexing encoding scheme, significantly higher data rates has been achieved in this work. Using 16-QAM modulation scheme, in conjunction with red, blue and green LDs, data rates of 4.4 Gbps, 4 Gbps and 4 Gbps, with the corresponding BER/SNR/EVM of 3.3 × 10⁻³/15.3/17.9, 1.4 × 10⁻³/16.3/15.4 and 2.8 × 10⁻³/15.5/16.7were obtained over transmission distance of ~20 cm. We also simultaneously demonstrated white light emission using red, blue and green LDs, after passing through a commercially available diffuser element. Our work highlighted that a tradeoff exists in operating the blue LDs at optimum bias condition while maintaining good color temperature. The best results were obtained when encoding red LDs which gave both the strongest received signal amplitude and white light with CCT value of 5835K.

18.
Opt Express ; 23(18): 23302-9, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368431

RESUMO

We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiber-pigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10(-3), well pass the forward error correction (FEC) criterion, were obtained.

19.
Opt Express ; 23(20): 26268-75, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480140

RESUMO

A low-loss and high-Q Ta(2)O(5) based micro-ring resonator is presented. The micro-ring resonator and channel waveguide with core area of the 700 by 400 nm(2) were fabricated on amorphous Ta(2)O(5) thin films prepared by reactive sputtering at 300°C and post annealing at 650°C for 3 hours. The Ta(2)O(5) micro-ring resonator with a diameter of 200 µm was coupled to the channel waveguide with a coupled Q up to 38,000 at a 0.9 µm coupling gap. By fitting the transmission spectrum of the resonator, the extracted loss coefficient inside the ring cavity and transmission coefficient of TE mode were 8.1dB/cm and 0.9923, leading to the estimated unloaded Q of higher than 44,000. In addition, based on the cut-back method, the propagation loss and the coupling loss of Ta(2)O(5) channel waveguide with an inverse taper were 1.5dB/cm and 3.2 dB, respectively. The proposed Ta(2)O(5) technology offers an unique alternative for fabricating high performance guided wave devices, and may well lead to novel applications in photonic integrated circuits.

20.
Opt Express ; 23(26): 33656-66, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26832029

RESUMO

Visible Light Communication (VLC) as a new technology for ultrahigh-speed communication is still limited when using slow modulation light-emitting diode (LED). Alternatively, we present a 4-Gbit/s VLC system using coherent blue-laser diode (LD) via 16-quadrature amplitude modulation orthogonal frequency division multiplexing. By changing the composition and the optical-configuration of a remote phosphor-film the generated white light is tuned from cool day to neutral, and the bit error rate is optimized from 1.9 × 10(-2) to 2.8 × 10(-5) in a blue filter-free link due to enhanced blue light transmission in forward direction. Briefly, blue-LD is an alternative to LED for generating white light and boosting the data rate of VLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA