Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Genomics ; 22(1): 118, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33581720

RESUMO

BACKGROUND: The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. RESULTS: By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. CONCLUSION: The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Animais , Bovinos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Masculino
2.
Angew Chem Int Ed Engl ; 60(1): 351-359, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32876994

RESUMO

Renal tubular secretion is an active efflux pathway for the kidneys to remove molecules but has yet to be used to enhance kidney cancer targeting. We report indocyanine green (ICG) conjugated with a 2100 Da PEG molecule (ICG-PEG45) as a renal-tubule-secreted near-infrared-emitting fluorophore for hyperfluorescence imaging of kidney cancers, which cannot be achieved with hepatobiliary- and glomerular-clearable ICG. This pathway-dependent targeting of kidney cancer arises from the fact that the secretion pathway enables ICG-PEG45 to be effectively effluxed out of normal proximal tubules through P-glycoprotein transporter while being retained in cancerous kidney tissues with low P-glycoprotein expression. Tuning elimination pathways and utilizing different efflux kinetics of medical agents in normal and diseased tissues could be a new strategy for tackling challenges in disease diagnosis and treatments that cannot be addressed with passive and ligand-receptor-mediated active targeting.


Assuntos
Corantes Fluorescentes/uso terapêutico , Verde de Indocianina/uso terapêutico , Neoplasias Renais/diagnóstico por imagem , Via Secretória/fisiologia , Humanos
3.
Bioconjug Chem ; 31(2): 241-247, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31697893

RESUMO

Subtle changes in size can induce distinct responses of the body to hard nanomaterials; however, it is largely unknown whether just a few ethylene oxide unit differences in soft poly(ethylene glycol) (PEG) molecules could significantly alter the renal clearance of small molecules. By systematically investigating in vivo transport of the representative renal clearable organic dyes, IRDye800CW after being conjugated with a series of PEG molecules with molecular weight (MW) below 10 kDa, we found a MW-dependent scaling law: PEG45 (MW = 2100 Da) is an optimized MW to generate the most efficient renal clearance for IRDye800CW by expediting the glomerular filtration of organic dyes and reducing their nonspecific interactions with background tissue. Moreover, the uniqueness of PEG45 can be generalized to other organic dyes such as ZW800-1 and fluorescein. This finding highlights the importance of low-MW PEGylation in tailoring in vivo transport of organic fluorophores, which would broaden their biomedical applications.


Assuntos
Corantes/metabolismo , Rim/metabolismo , Polietilenoglicóis/metabolismo , Animais , Transporte Biológico , Corantes/análise , Camundongos Endogâmicos BALB C , Peso Molecular , Imagem Óptica , Polietilenoglicóis/análise
4.
Chembiochem ; 16(11): 1555-9, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26096673

RESUMO

α-L-Fucosidase activity is associated with several diseases. To study the enzymatic activity change under pathological conditions, we developed a quinone methide-generating activity-based probe useful for examining the presence, activity, and localization of human α-L-fucosidase in vivo in the context of Helicobacter pylori infection. In particular, an increase in intracellular fucosidase (Fuca1) activity was found in gastric epithelial cells upon bacterial infection. We further studied the effect of several bacterial stimulants on this enhanced Fuca1 activity and identified lipopolysaccharides to be a major contributing factor.


Assuntos
Helicobacter pylori/fisiologia , Indolquinonas/metabolismo , Sondas Moleculares/metabolismo , alfa-L-Fucosidase/metabolismo , Linhagem Celular Tumoral , Epitélio/microbiologia , Humanos , Lipopolissacarídeos/metabolismo , Estômago/microbiologia
5.
Sci Rep ; 12(1): 2067, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136148

RESUMO

Dehorning is a common practice in the dairy industry, but raises animal welfare concerns. A naturally occurring genetic mutation (PC allele) comprised of a 212 bp duplicated DNA sequence replacing a 10-bp sequence at the polled locus is associated with the hornless phenotype (polled) in cattle. To test the hypothesis that the 10 bp deletion alone is sufficient to result in polled, a CRISPR-Cas9 dual guide RNA approach was optimized to delete a 133 bp region including the 10 bp sequence. Timing of ribonucleoprotein complex injections at various hours post insemination (hpi) (6, 8, and 18 hpi) as well as in vitro transcribed (IVT) vs synthetic gRNAs were compared. Embryos injected 6 hpi had a significantly higher deletion rate (53%) compared to those injected 8 (12%) and 18 hpi (7%), and synthetic gRNAs had a significantly higher deletion rate (84%) compared to IVT gRNAs (53%). Embryo transfers were performed, and bovine fetuses were harvested between 3 and 5 months of gestation. All fetuses had mutations at the target site, with two of the seven having biallelic deletions, and yet they displayed horn bud development indicating that the 10 bp deletion alone is not sufficient to result in the polled phenotype.


Assuntos
Indústria de Laticínios/métodos , Feto/anatomia & histologia , Cornos/crescimento & desenvolvimento , Deleção de Sequência/genética , Animais , Sistemas CRISPR-Cas , Bovinos , Transferência Embrionária/métodos , Feto/embriologia , Genótipo , Fenótipo , RNA Guia de Cinetoplastídeos/genética
6.
J Biol Chem ; 285(31): 24228-37, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20511235

RESUMO

Misfolded proteins associated with diverse aggregation disorders assemble not only into a single toxic conformer but rather into a suite of aggregated conformers with unique biochemical properties and toxicities. To what extent small molecules can target and neutralize specific aggregated conformers is poorly understood. Therefore, we have investigated the capacity of resveratrol to recognize and remodel five conformers (monomers, soluble oligomers, non-toxic oligomers, fibrillar intermediates, and amyloid fibrils) of the Abeta1-42 peptide associated with Alzheimer disease. We find that resveratrol selectively remodels three of these conformers (soluble oligomers, fibrillar intermediates, and amyloid fibrils) into an alternative aggregated species that is non-toxic, high molecular weight, and unstructured. Surprisingly, resveratrol does not remodel non-toxic oligomers or accelerate Abeta monomer aggregation despite that both conformers possess random coil secondary structures indistinguishable from soluble oligomers and significantly different from their beta-sheet rich, fibrillar counterparts. We expect that resveratrol and other small molecules with similar conformational specificity will aid in illuminating the conformational epitopes responsible for Abeta-mediated toxicity.


Assuntos
Peptídeos beta-Amiloides/química , Estilbenos/farmacologia , Medula Suprarrenal/metabolismo , Animais , Antioxidantes/farmacologia , Benzotiazóis , Epitopos/química , Microscopia de Força Atômica , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Resveratrol , Coloração pela Prata , Tiazóis/química
7.
Chembiochem ; 12(11): 1749-58, 2011 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-21671331

RESUMO

Substantial evidence suggests that soluble prefibrillar oligomers of the Aß42 peptide associated with Alzheimer's disease are the most cytotoxic aggregated Aß isoform. Limited previous work has revealed that aromatic compounds capable of remodeling Aß oligomers into nontoxic conformers typically do so by converting them into off-pathway aggregates instead of dissociating them into monomers. Towards identifying small-molecule antagonists capable of selectively dissociating toxic Aß oligomers into soluble peptide at substoichiometric concentrations, we have investigated the pathways used by polyphenol aglycones and their glycosides to remodel Aß soluble oligomers. We find that eleven polyphenol aglycones of variable size and structure utilize the same remodeling pathway whereby Aß oligomers are rapidly converted into large, off-pathway aggregates. Strikingly, we find that glycosides of these polyphenols all utilize a distinct remodeling pathway in which Aß oligomers are rapidly dissociated into soluble, disaggregated peptide. This disaggregation activity is a synergistic combination of the aglycone and glycone moieties because combinations of polyphenols and sugars fail to disaggregate Aß oligomers. We also find that polyphenolic glycosides and aglycones use the same opposing pathways to remodel Aß fibrils. Importantly, both classes of polyphenols fail to remodel nontoxic Aß oligomers (which are indistinguishable in size and morphology to Aß soluble oligomers) or promote aggregation of freshly disaggregated Aß peptide; thus revealing that they are specific for remodeling toxic Aß conformers. We expect that these and related small molecules will be powerful chemical probes for investigating the conformational and cellular underpinnings of Aß-mediated toxicity.


Assuntos
Peptídeos beta-Amiloides/química , Glicosídeos/química , Fragmentos de Peptídeos/química , Polifenóis/química , Peptídeos beta-Amiloides/metabolismo , Animais , Glicosídeos/metabolismo , Células PC12 , Fragmentos de Peptídeos/metabolismo , Polifenóis/metabolismo , Conformação Proteica , Ratos , Relação Estrutura-Atividade
8.
Front Genet ; 12: 648482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927751

RESUMO

The introduction of genome editing reagents into mammalian zygotes has traditionally been accomplished by cytoplasmic or pronuclear microinjection. This time-consuming procedure requires expensive equipment and a high level of skill. Electroporation of zygotes offers a simplified and more streamlined approach to transfect mammalian zygotes. There are a number of studies examining the parameters used in electroporation of mouse and rat zygotes. Here, we review the electroporation conditions, timing, and success rates that have been reported for mice and rats, in addition to the few reports about livestock zygotes, specifically pigs and cattle. The introduction of editing reagents at, or soon after, fertilization can help reduce the rate of mosaicism, the presence of two of more genotypes in the cells of an individual; as can the introduction of nuclease proteins rather than mRNA encoding nucleases. Mosaicism is particularly problematic in large livestock species with long generation intervals as it can take years to obtain non-mosaic, homozygous offspring through breeding. Gene knockouts accomplished via the non-homologous end joining pathway have been more widely reported and successfully accomplished using electroporation than have gene knock-ins. Delivering large DNA plasmids into the zygote is hindered by the zona pellucida (ZP), and the majority of gene knock-ins accomplished by electroporation have been using short single stranded DNA (ssDNA) repair templates, typically less than 1 kb. The most promising approach to deliver larger donor repair templates of up to 4.9 kb along with genome editing reagents into zygotes, without using cytoplasmic injection, is to use recombinant adeno-associated viruses (rAAVs) in combination with electroporation. However, similar to other methods used to deliver clustered regularly interspaced palindromic repeat (CRISPR) genome-editing reagents, this approach is also associated with high levels of mosaicism. Recent developments complementing germline ablated individuals with edited germline-competent cells offer an approach to avoid mosaicism in the germline of genome edited founder lines. Even with electroporation-mediated delivery of genome editing reagents to mammalian zygotes, there remain additional chokepoints in the genome editing pipeline that currently hinder the scalable production of non-mosaic genome edited livestock.

9.
Sci Rep ; 10(1): 16031, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994506

RESUMO

Introducing useful traits into livestock breeding programs through gene knock-ins has proven challenging. Typically, targeted insertions have been performed in cell lines, followed by somatic cell nuclear transfer cloning, which can be inefficient. An alternative is to introduce genome editing reagents and a homologous recombination (HR) donor template into embryos to trigger homology directed repair (HDR). However, the HR pathway is primarily restricted to actively dividing cells (S/G2-phase) and its efficiency for the introduction of large DNA sequences in zygotes is low. The homology-mediated end joining (HMEJ) approach has been shown to improve knock-in efficiency in non-dividing cells and to harness HDR after direct injection of embryos. The knock-in efficiency for a 1.8 kb gene was contrasted when combining microinjection of a gRNA/Cas9 ribonucleoprotein complex with a traditional HR donor template or an HMEJ template in bovine zygotes. The HMEJ template resulted in a significantly higher rate of gene knock-in as compared to the HR template (37.0% and 13.8%; P < 0.05). Additionally, more than a third of the knock-in embryos (36.9%) were non-mosaic. This approach will facilitate the one-step introduction of gene constructs at a specific location of the bovine genome and contribute to the next generation of elite cattle.


Assuntos
Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Engenharia Genética/métodos , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Bovinos , Reparo do DNA por Junção de Extremidades/fisiologia , Reparo do DNA/genética , Genoma/genética , Recombinação Homóloga/genética , Microinjeções/métodos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Zigoto/fisiologia
10.
Sci Rep ; 10(1): 22309, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339870

RESUMO

The CRISPR/Cas9 genome editing tool has the potential to improve the livestock breeding industry by allowing for the introduction of desirable traits. Although an efficient and targeted tool, the CRISPR/Cas9 system can have some drawbacks, including off-target mutations and mosaicism, particularly when used in developing embryos. Here, we introduced genome editing reagents into single-cell bovine embryos to compare the effect of Cas9 mRNA and protein on the mutation efficiency, level of mosaicism, and evaluate potential off-target mutations utilizing next generation sequencing. We designed guide-RNAs targeting three loci (POLLED, H11, and ZFX) in the bovine genome and saw a significantly higher rate of mutation in embryos injected with Cas9 protein (84.2%) vs. Cas9 mRNA (68.5%). In addition, the level of mosaicism was higher in embryos injected with Cas9 mRNA (100%) compared to those injected with Cas9 protein (94.2%), with little to no unintended off-target mutations detected. This study demonstrated that the use of gRNA/Cas9 ribonucleoprotein complex resulted in a high editing efficiency at three different loci in bovine embryos and decreased levels of mosaicism relative to Cas9 mRNA. Additional optimization will be required to further reduce mosaicism to levels that make single-step embryo editing in cattle commercially feasible.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Animais , Bovinos , Embrião de Mamíferos , Genoma/genética , Mosaicismo , Mutação/genética , Taxa de Mutação , RNA Mensageiro/genética
11.
Microbiol Resour Announc ; 9(8)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32079635

RESUMO

Halophile-specific enzymes have wide-ranging industrial and commercial applications. Despite their importance, there is a paucity of available halophile whole-genome sequences. Here, we report the draft genome sequences of 16 diverse salt-tolerant strains of bacteria and archaea isolated from a variety of high-salt environments.

14.
Proc Natl Acad Sci U S A ; 103(25): 9584-9, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16769896

RESUMO

Lateral gene transfer (LGT) is now accepted as an important factor in the evolution of prokaryotes. Establishment of the occurrence of LGT is typically attempted by a variety of methods that includes the comparison of reconstructed phylogenetic trees, the search for unusual GC composition or codon usage within a genome, and identification of similarities between distant species as determined by best blast hits. We explore quantitative assessments of these strategies to study the prokaryotic trait of nitrogen fixation, the enzyme-catalyzed reduction of N(2) to ammonia. Phylogenies constructed on nitrogen fixation genes are not in agreement with the tree-of-life based on 16S rRNA but do not conclusively distinguish between gene loss and LGT hypotheses. Using a series of analyses on a set of complete genomes, our results distinguish two structurally distinct classes of MoFe nitrogenases whose distribution cuts across lines of vertical inheritance and makes us believe that a conclusive case for LGT has been made.


Assuntos
Transferência Genética Horizontal/genética , Fixação de Nitrogênio/genética , Códon/genética , Biologia Computacional , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA