Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Macromol Rapid Commun ; 43(5): e2100736, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837422

RESUMO

Nano- and microscale morphology endows surfaces that play conspicuous roles in natural or artificial objects with unique functions. Surfaces with dynamic regulating features capable of switching the structures, patterns, and even dimensions of their surface profiles can control friction and wettability, thus having potential applications in antibacterial, haptics, and fluid dynamics. Here, a freestanding film with light-switchable surface based on cholesteric liquid crystal networks is presented to translate 2D flat plane into a 3D nanometer-scale topography. The wettability of the interface can be controlled by hiding or revealing the geometrical features of the surfaces with light. This reversible dynamic actuation is obtained through the order parameter change of the periodic cholesteric organization under a photoalignment procedure and lithography-free mode. Complex tailored structures can be used to encrypt tactile information and improve wettability by predesigning the orientation distribution of liquid crystal director. This rapid switching nanoprecision smart surface provides a novel platform for artificial skin, optics, and functional coatings.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Molhabilidade
2.
Opt Express ; 24(3): 3112-26, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906876

RESUMO

This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.


Assuntos
Luz , Óptica e Fotônica/métodos , Polímeros/química , Cor , Corantes/química , Cristais Líquidos/química , Soluções , Temperatura , Raios Ultravioleta
3.
Opt Express ; 23(8): 10168-80, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969059

RESUMO

This work investigates the performance evolution of color cone lasing emissions (CCLEs) based on dye-doped cholesteric liquid crystal (DDCLC) cells at different fabrication conditions. Experimental results show that the energy threshold (E(th)) and relative slope efficiency (η(s)) of the lasing signal emitted at each cone angle (0°-35°) in the CCLE decreases and increases, respectively, when the waiting time in a homogenously rubbed aligned DDCLC cell is increased from 0 hr to 216 hr (9 days). This result occurs because defect lines gradually shrink with the anchoring of the surface alignment when the waiting time is increased. Hence, the scattering loss decreases, and the dwelling time of the fluorescence photons in the resonator increases, which in turn enhances the CCLE performance. With the aligned cell given the pretreatment of a rapid annealing processing (RAP), the waiting time for obtaining an optimum CCLE can markedly be reduced sixfold. The surface alignment of the DDCLC cell also plays a necessary role in generating the CCLE. This work provides an insight into the temporal evolution of the performance for the CCLE laser and offers a method (RAP) of significantly speeding up the formation of a CCLE laser with optimum performance.

4.
Opt Express ; 23(20): 26565-75, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480169

RESUMO

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps for this structure. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

5.
Opt Express ; 22(8): 9171-81, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24787807

RESUMO

This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs. Doing so may quickly destroy the BP PBG structure. However, with the successive illumination of a green beam, the BPI PBG device can be fast-turned on, owing to the fast disappearance of the disturbance of the azo-LCs on the boundary LCs via the green-beam-induced cis → trans back isomerization. The response time and irradiated energy density for turning off (on) the BP PBG device under the UV (green) beam irradiation are only 120 ms (120 ms) and 0.764 mJ/cm(2) (2.12 mJ/cm(2)), respectively, which are a thousand-fold reduction in photoswitching a traditional cholesteric LC (CLC) PBG device based on similar experimental conditions (i.e., materials used, azo-LC concentration (1 wt%), spectral position of PBG peak, sample thickness, and temperature difference for a working temperature lower than the clearing one). The BP PBG device can significantly contribute to efforts to develop a photosensitive and all-optically fast-controlling LC laser.

6.
Opt Express ; 22(24): 29479-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606882

RESUMO

This study demonstrates for the first time a continuously tunable photonic bandgap (PBG) of wide spectral range based on a blue phase (BP) wedge cell. A continuously shifting PBG of the BP wedge cell occurs due to the thickness gradient of the wedge cell at a fixed temperature. The wedge cell provides a gradient of boundary force on the LCs and thus forms a distribution of BP crystal structure with a gradient lattice. Additionally, a spatially tunable lasing emission based on a dye-doped BP (DDBP) wedge cell is also demonstrated. The tunable band of the PBG and lasing emission is about 130 nm and 70 nm, respectively, which tuning spectral ranges are significantly wider than those of CLC and DDCLC wedge cells, respectively. Such a BP device has a significant potential in applications of tunable photonic devices and displays.


Assuntos
Corantes/química , Lasers , Fótons , Espectrometria de Fluorescência , Temperatura
7.
Opt Lett ; 39(12): 3516-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978525

RESUMO

In this Letter, we propose defect-mode lasing from a one-dimensional asymmetric photonic structure with dye-doped nematic liquid crystal as a central defect layer. The local field intensity of the distinguished single defect mode at the overlapped photonic band edges is drastically enhanced by the asymmetric structure consisting of two distinct multilayer photonic crystals. With high density of states of photons, effective output lasing emission and maximum input excitation are ensured. As a result, the single-mode lasing with a low excitation threshold of 0.2 µJ/pulse is achieved due to the combination of the defect layer and the photonic band edge effect.

8.
Opt Express ; 21(13): 15765-76, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842363

RESUMO

This paper presents an optically wavelength-tunable and intensity-switchable dye-doped cholesteric liquid crystal (DDCLC) spherical microlaser with an azo-chiral dopant. Experimental results present that two functions of optical control - tunability of lasing wavelength and switchability of lasing intensity - can be obtained for this spherical microlaser at low and high intensity regimes of non-polarized UV irradiation, respectively. If the DDCLC microdroplet is subjected to weak UV irradiation, azo-chiral molecules may transform to the bent cis state at a low concentration rate. The effect can slightly decrease the local order of LCs and thus the helical twisting power of the CLC in the microdroplet. As a result, the CLC pitch may become slightly elongated, which will cause the gradual red-shift of both omnidirectional PBG and lasing emission of the DDCLC spherical microdroplet. In contrast, when the microdroplet is subjected to strong UV irradiation, numerous azo-chiral molecules may simultaneously change to bent cis-isomers to seriously disarrange the helical texture of the CLC, which will quickly deform the PBG and deactivate the lasing emission of the microdroplet. Prolonged irradiation of a blue beam after strong UV irradiation may cause the cis azo-chiral molecules quickly convert back rod-like trans-isomers, which may then regenerate the CLC Bragg onion and PBG structures and reactivate the lasing emission of the microdroplet. Optical control of the DDCLC spherical microlaser is realized on a scale of seconds and minutes when UV irradiation is strong and weak, respectively. The 3D DDCLC spherical microlaser is a highly promising controllable 3D micro-light source or microlaser (e.g., all-optical 3D single photon microlaser) for applications of 3D all-optical integrated photonics, laser displays, and biomedical imaging and therapy, and as a 3D UV microdosagemeter or microsensor.

9.
Microorganisms ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208813

RESUMO

Carocin S2 is a bacteriocin with a low molecular weight generated by Pectobacterium carotovorum subsp. carotovorum 3F3 strain. The caroS2K gene, which is found in the genomic DNA alongside the caroS2I gene, which codes for an immunity protein, encodes this bacteriocin. We explored the residues responsible for Carocin S2's cytotoxic or RNA-se activity using a structure-based mutagenesis approach. The minimal antibiotic functional region starts at Lys691 and ends at Arg783, according to mutational research. Two residues in the identified region, Phe760 and Ser762, however, are unable to demonstrate this activity, suggesting that these sites may interact with another domain. Small modifications in the secondary structure of mutant caroS2K were revealed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence (ITF), showing ribosomal RNA cleavage in the active site. A co-immunoprecipitation test indicated that the immunity protein CaroS2I binds to CaroS2K's C-terminus, while a region under the uncharacterized Domain III inhibits association of N-terminally truncated CaroS2K from interacting with CaroS2I. Carocin S2, a ribosomal ribonuclease bacteriocin, is the first to be identified with a domain III that encodes the cytotoxic residues as well as the binding sites between its immunity and killer proteins.

10.
Opt Express ; 19(10): 9676-89, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643225

RESUMO

A novel demonstration of an all-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber (DDLCIPCF) is presented. Overall spectral transmittance of the DDLCIPCF can decrease and then increase with a concomitant red-shift of the spectrum curve with increasing irradiation time of one UV beam. Continuing irradiation of one green beam following UV illumination on the DDLCIPCF can cause the transmission spectrum to recover completely. The reversible all-optical controllability of the photonic band structure of the fiber is attributable to the isothermal planar nematic (PN)→scattering (S)→isotropic (I) and I→S→PN state transitions of the LCs via the UV-beam-induced trans→cis and green-beam-induced cis→trans back isomerizations of the azo-dye, respectively, in the cladding of the DDLCIPCF. The photoinduced appearance of the S state and the variation of the index modulation between the core and the cladding of the fiber result in the variation of overall spectral transmittance and the shift of transmission spectrum, respectively.

11.
Opt Express ; 19(3): 2391-400, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369057

RESUMO

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.


Assuntos
Eletrônica/instrumentação , Lasers , Cristais Líquidos/química , Cristais Líquidos/efeitos da radiação , Desenho Assistido por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Opt Lett ; 36(8): 1311-3, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21499340

RESUMO

This study demonstrates a tunable Fresnel lens in an azo-dye-doped liquid crystal (ADDLC) film using an interference technique. One Fresnel-patterned green beam using a Sagnac interferometer irradiated the UV-illuminated ADDLC cell, yielding a concentric zone plate distribution with homeotropic and isotropic structures in bright and dark regions of the green interference pattern. The proposed Fresnel lens is polarization independent, focus tunable, and the focusing efficiency of the device can be optically controlled.


Assuntos
Compostos Azo/química , Corantes/química , Interferometria/instrumentação , Lentes , Cristais Líquidos/química , Fenômenos Ópticos
13.
Eur J Sport Sci ; 21(2): 204-212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32050853

RESUMO

AbstractThis study investigated the effects of whole body vibration (WBV) training combined with blood flow restriction (BFR) on muscle fitness. Twenty physically inactive adults were randomly assigned to a WBV + BFR group (8 men and 2 women) and a WBV group (8 men and 2 women). The participants in the WBV group were subjected to 10 sets of intermittent WBV exercise 20 min/day, 3 days/week, for 8 weeks. The participants in the WBV + BFR group received the same WBV treatment, but the proximal portion of their thighs was compressed using inflatable cuffs. Dual-energy X-ray absorptiometry estimated thigh muscle mass, one repetition maximal (1RM) leg press, and muscle endurance were measured before and after the training programme. The results indicated that thigh muscle mass significantly increased (3%) after the 8-week training period only in the WBV + BFR group. Meanwhile, 1RM leg press and muscle endurance significantly increased in both groups after training (p < 0.05). Analysis of covariance revealed that the increase in 1RM leg press and muscle endurance was significantly higher (p < 0.05) in the WBV + BFR group than the WBV group (leg press: 11.1%. vs. 4.37%; muscle endurance: 48.84% vs. 15.19%, respectively). In conclusion, exposure to regular WBV + BFR training can increase thigh muscle mass, maximal strength, and muscle endurance compared with exposure to WBV training alone. WBV + BFR training appears to be a feasible strategy for improving muscle mass, strength, and endurance in previously untrained participants.


Assuntos
Exercício Físico/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vibração , Adaptação Fisiológica , Adulto , Terapia Combinada , Constrição , Feminino , Humanos , Masculino , Coxa da Perna/irrigação sanguínea , Coxa da Perna/fisiologia , Torniquetes
14.
ACS Appl Mater Interfaces ; 13(46): 55550-55558, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761914

RESUMO

Dynamic control of motion at the molecular level is a core issue in promoting the bottom-up programmable modulation of sophisticated self-organized superstructures. Self-assembled artificial nanoarchitectures through subtle noncovalent interactions are indispensable for diverse applications. Here, the active solar renewable energy is used to harness cholesteric liquid crystal (CLC) superstructure devices via delicate control of the dynamic equilibrium between the concentrations of molecular motor molecules with opposite handedness. Thus, the spectral position and handedness of a photonic superstructure can be tuned continuously, bidirectionally, and reversibly within the entire working spectrum (from near-ultraviolet to the thermal infrared region, over 2 µm). With these unique horizons, three advanced photoresponsive chiroptical devices, namely, a mirrorless laser, an optical vortex generator, and an encrypted contactless photorewritable board, are successfully demonstrated. The sunlight-fueled chirality inversion prompts facile switching of functionalities, such as free-space optical communication, stereoscopic display technology, and spin-to-orbital angular momentum conversion. Motor-based chiroptic devices with dynamic and versatility controllability, fast response, ecofriendly characteristics, stability, and high efficiency have potential to replace the traditional elements with static functions. The inexhaustible natural power provides a promising means for outdoor-use optics and nanophotonics.

15.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669140

RESUMO

In this paper, we propose a modified gravity method by introducing centrifugal force to promote the stacking of silica particles and the order of formed colloidal crystals. In this method, a monodispersed silica colloidal solution is filled into empty cells and placed onto rotation arms that are designed to apply an external centrifugal force to the filled silica solution. When sample fabrication is in progress, silica particles are forced toward the edges of the cells. The number of defects in the colloidal crystal decreases and the structural order increases during this process. The highest reflectivity and structural order of a sample was obtained when the external centrifugal force was 18 G. Compared to the samples prepared using the conventional stacking method, samples fabricated with centrifugal force possess higher reflectivity and structural order. The reflectivity increases from 68% to 90%, with an increase in centrifugal force from 0 to 18 G.

16.
ACS Appl Mater Interfaces ; 13(37): 44916-44924, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514781

RESUMO

Self-organized periodic micro/nanostructures caused by stimulus-responsive structural deformation often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems). However, the long-range orderliness of these structures is often beyond control. In this article, we first demonstrate that a large-area disordered two-dimensional (2D) microgrid chiral structure appears in the cholesteric liquid crystal (CLC) reactive mixture because of the photopolymerization-induced Helfrich deformation effect under exposure to the single UV-laser beam. The result is attributed to the impact of an internal longitudinal strain, which is caused by the pitch contraction of the CLC-monomer region through the continuing compression of the thickening CLC polymer layer adhered on the illuminated substrate of the sample during photopolymerization. The experimental results further show that a one-dimensional (1D) UV-laser interference field can be used to effectively control the postformed 2D microgrid structure to arrange in an orderly manner throughout the large exposed area (an order of centimeter). The optimum ability for controlling the orderliness of the microgrid structure can be achieved if the spacing width of the interference field approximates the periodicity of the postformed 2D microgrids. Several factors, such as the pitch of the CLC mixture and the included angle and intensity of the two interfering laser beams, which influence the orderliness and properties of the 2D microgrid structure, are explored in this study. The result of this research opens a new page to improve the applicability of the Helfrich deformation phenomenon and further provides a reference platform for manipulating, modifying, and even tailoring periodic micro/nanostructures in self-organized supramolecular soft-matter systems for application in advanced optics/photonics.

17.
ACS Appl Mater Interfaces ; 13(2): 2483-2495, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404219

RESUMO

Influenza, pneumonia, and pathogenic infection of the respiratory system are boosted in cold environments. Low temperatures also result in vasoconstriction, restraint of blood flow, and decreased oxygen to the heart, and the risk of a heart attack would increase accordingly. The present face mask fabric fails to preserve its air-filtering function as its electrostatic function vanishes once exposed to water. Therefore, its filtering efficacy would be decreased meaningfully, making it nearly impracticable to reuse the disposable face masks. The urgent requirement for photothermal fabrics is also rising. Nanobased polyethyleneimine-polypyrrole nanopigments (NPP NPs) have been developed and have strong near-infrared spectrum absorption and exceptional photothermal convertible performance. Herein, the mask fabric used PE-fiber-constructed membrane (PEFM) was coated by the binding affinity of the cationic polyethyleneimine component of NPP NPs forming NPP NPs-PEFM. To the best of our knowledge, no study has investigated NPP NP-coated mask fabric to perform infrared red (solar or body) photothermal conversion efficacy to provide biocompatible warming, remotely photothermally captured antipathogen, and antivasoconstriction in vivo. This pioneering study showed that the developed NPP NPs-PEFM could be washable, reusable, breathable, biocompatible, and photothermal conversable for active eradication of pathogenic bacteria. Further, it possesses warming preservation and antivasoconstriction.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Polietileno/química , Polietilenoimina/química , Polímeros/química , Pirróis/química , Têxteis/análise , Animais , Antibacterianos/química , Raios Infravermelhos , Máscaras/microbiologia , Nanoestruturas/ultraestrutura , Processos Fotoquímicos , Coelhos , Ratos , Temperatura , Têxteis/microbiologia
18.
Opt Express ; 18(3): 2613-20, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174090

RESUMO

This work demonstrates, for the first time, an all-optically controllable distributed feedback (DFB) laser based on a dye-doped holographic polymer-dispersed liquid crystal (DDHPDLC) grating with a photoisomerizable dye. Intensity of the lasing emission can be reduced and increased by raising the irradiation intensity of one CW circularly-polarized green beam and the irradiation time of one CW circularly-polarized red beam, respectively. The all-optical controllability of the lasing emission is owing to the green-beam-induced isothermal nematic-->isotropic and red-beam-induced isothermal isotropic-->nematic phase transitions of the LCs via trans-->cis and cis-->trans back isomerizations of the azo-dye, respectively, in the LC-droplet-rich regions of the grating. The former (latter) mechanism can reduce (increase) the index modulation and thereby the coupling strength in the DFB grating, resulting in the decay (rise) of the lasing emission. Thermal effect is excluded from possible mechanisms causing such an optical controllability of the lasing emission.

19.
Opt Express ; 18(25): 25896-905, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164935

RESUMO

This study investigates, for the first time, an all-optically controllable random laser based on a dye-doped liquid crystal (DDLC) cell added with a photoisomerizable dye. Experimental results indicate that the lasing intensity of this random laser can be all-optically controlled to decrease and increase sequentially with a two-step exposure of one UV and then one green beam. All-optically reversible controllability of the random lasing emission is attributed to the isothermal nematic(N)-->isotropic(I) and I-->N phase transitions for LCs due to the UV-beam-induced trans-->cis and green-beam-induced cis-->trans back isomerizations of the photoisomerizable dye, respectively. The former and the latter can decrease and increase the spatial fluctuations of the order and thus of the dielectric tensor of LCs, respectively, subsequently increasing and decreasing the diffusion constant (or transport mean free path), respectively, and thus decaying and rising the scattering strength for the fluorescence photons in their recurrent multi-scattering process, respectively. The consequent decrease and increase of the lasing intensity for the random laser and thus the rise and descent of its energy threshold are generated, respectively.


Assuntos
Corantes/química , Lasers , Cristais Líquidos/química , Corantes/efeitos da radiação , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Isomerismo , Luz , Cristais Líquidos/efeitos da radiação , Fotoquímica/métodos
20.
Polymers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322782

RESUMO

This paper presents a focusing efficiency and focal length tunable planar Fresnel lens in reflection type based on azo-dye-doped cholesterol liquid crystal film. The Fresnel-like pattern of a pumping beam can be formed by a Sagnac interferometer. When the azo-dye molecules are irradiated by the pumping beam, the photoalignment effect will be induced in the bright (odd) zones due to the trans-cis photoisomerization of azo-dye molecules. Thus, the structures of cholesteric liquid crystals in the odd zones will reorient from the imperfectly planar textures to the perfectly planar textures. The different structures of cholesteric liquid crystals in two adjacent zones will give rise to phase difference for the reflected light and thus function as a Fresnel lens. The focusing efficiency of the proposed Fresnel lens can be controlled by the applied voltages and affected by the polarization state of incident light. Moreover, various focal lengths of the Fresnel lens can be achieved by rewriting a different center radius of the Fresnel-like pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA