Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Small ; 16(37): e2003656, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790058

RESUMO

A key hallmark of many diseases, especially those in the central nervous system (CNS), is the change in tissue stiffness due to inflammation and scarring. However, how such changes in microenvironment affect the regenerative process remains poorly understood. Here, a biomimicking fiber platform that provides independent variation of fiber structural and intrinsic stiffness is reported. To demonstrate the functionality of these constructs as a mechanotransduction study platform, these substrates are utilized as artificial axons and the effects of axon structural versus intrinsic stiffness on CNS myelination are independently analyzed. While studies have shown that substrate stiffness affects oligodendrocyte differentiation, the effects of mechanical stiffness on the final functional state of oligodendrocyte (i.e., myelination) has not been shown prior to this. Here, it is demonstrated that a stiff mechanical microenvironment impedes oligodendrocyte myelination, independently and distinctively from oligodendrocyte differentiation. Yes-associated protein is identified to be involved in influencing oligodendrocyte myelination through mechanotransduction. The opposing effects on oligodendrocyte differentiation and myelination provide important implications for current work screening for promyelinating drugs, since these efforts have focused mainly on promoting oligodendrocyte differentiation. Thus, the platform may have considerable utility as part of a drug discovery program in identifying molecules that promote both differentiation and myelination.


Assuntos
Mecanotransdução Celular , Bainha de Mielina , Axônios , Diferenciação Celular , Oligodendroglia
2.
Mol Ther ; 27(2): 411-423, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30611662

RESUMO

The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination. We show that miR-219/miR-338 promoted primary rat OL differentiation and myelination in vitro. Using spinal cord injury as a proof-of-concept, we further demonstrate that miR-219/miR-338 could also be delivered non-virally in vivo using an aligned fiber-hydrogel scaffold to enhance remyelination after a hemi-incision injury at C5 level of Sprague-Dawley rats. Specifically, miR-219/miR-338 mimics were incorporated as complexes with the carrier, TransIT-TKO (TKO), together with neurotrophin-3 (NT-3) within hybrid scaffolds that comprised poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP)-aligned fibers and collagen hydrogel. After 1, 2, and 4 weeks post-treatment, animals that received NT-3 and miR-219/miR-338 treatment preserved a higher number of Olig2+ oligodendroglial lineage cells as compared with those treated with NT-3 and negative scrambled miRs (Neg miRs; p < 0.001). Additionally, miR-219/miR-338 increased the rate and extent of differentiation of OLs. At the host-implant interface, more compact myelin sheaths were observed when animals received miR-219/miR-338. Similarly within the scaffolds, miR-219/miR-338 samples contained significantly more myelin basic protein (MBP) signals (p < 0.01) and higher myelination index (p < 0.05) than Neg miR samples. These findings highlight the potential of this platform to promote remyelination within the CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Portadores de Fármacos/química , MicroRNAs/metabolismo , Remielinização/fisiologia , Animais , Feminino , Hidrogéis/química , Imuno-Histoquímica , MicroRNAs/química , MicroRNAs/genética , Microscopia Eletrônica de Varredura , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Sprague-Dawley , Remielinização/genética
3.
J Tissue Eng ; 13: 20417314221087417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422984

RESUMO

Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.

4.
ACS Appl Mater Interfaces ; 13(47): 55840-55850, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792341

RESUMO

Targeted drug delivery to specific neural cells within the central nervous system (CNS) plays important roles in treating neurological disorders, such as neurodegenerative (e.g., targeting neurons) and demyelinating diseases [e.g., targeting oligodendrocytes (OLs)]. However, the presence of many other cell types within the CNS, such as microglial and astrocytes, may lead to nonspecific uptake and subsequent side effects. As such, exploring an effective and targeted drug delivery system is of great necessity. Synthetic micro-/nanoparticles that have been coated with biologically derived cellular membranes have emerged as a new class of drug delivery vehicles. However, the use of neural cell-derived membrane coatings remains unexplored. Here, we utilized this technique and demonstrated the efficacy of targeted delivery by using four types of cell membranes that were derived from the CNS, namely, microglial, astrocytes, oligodendrocyte progenitor cells (OPCs), and cortical neurons. A successful cell membrane coating over poly(ε-caprolactone) nanoparticles (NPs) was confirmed using dynamic light scattering, zeta potential measurements, and transmission electron microscopy. Subsequently, an extensive screening of these cell membrane-coated NPs was carried out on various CNS cells. Results suggested that microglial and OLs were the most sensitive cell types toward cell membrane-coated NPs. Specifically, cell membrane-coated NPs significantly enhanced the uptake efficiency of OLs (p < 0.001). Additionally, a temporal uptake study indicated that the OLs took up microglial membrane-coated NPs (DPP-PCL-M Mem) most efficiently. Besides that, coating the NPs with four types of the CNS cell membrane did not result in obvious specific uptake in microglial but reduced the activation of microglial, especially for DPP-PCL-M Mem (p < 0.01). Taken together, DPP-PCL-M Mem were uptaken most efficiently in OLs and did not induce significant microglial activation and may be most suitable for CNS drug delivery applications.


Assuntos
Membrana Celular/metabolismo , Sistema Nervoso Central/metabolismo , Materiais Revestidos Biocompatíveis/metabolismo , Nanopartículas/metabolismo , Neurônios/citologia , Animais , Membrana Celular/química , Células Cultivadas , Sistema Nervoso Central/química , Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Tamanho da Partícula , Ratos , Propriedades de Superfície
5.
Mater Sci Eng C Mater Biol Appl ; 118: 111407, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255010

RESUMO

A proper protein orientation is often required in order to achieve specific protein-receptor interaction to elicit a desired biological response. Here, we present a Protein A-based biomimicking platform that is capable of efficiently orienting proteins for evaluating cellular behaviour. By absorbing Protein A onto aligned bio-mimicking polycaprolactone (PCL) fibers, we demonstrate that protein binding could be retained on these fibers for at least 7 days under physiologically relevant conditions. We further show that Protein A served as a molecular orientor to arrange the recombinant proteins in similar orientations. Such protein-orienting scaffolds were further verified to be biologically functional by using sensitive primary rat cortical neurons (CNs) and oligodendrocyte progenitor cells (OPCs), as model neural cells for a stringent proof of concept. Specifically, CNs that were seeded on fibers coated with Protein A and a known enhancer of neurite growth (L1 Cell Adhesion Molecular L1CAM) displayed the longest total neurite length (462.77 ± 100.79 µm, p < 0.001) as compared to the controls. Besides that, OPCs seeded on fibers coated with Protein A and Neuregulin-1 Type III (Nrg1 type III) (myelin enhancer) produced the longest myelin ensheathment length (19.8 ± 11.69 µm). These results demonstrate the efficacy of this platform for protein screening applications.


Assuntos
Neuritos , Neurônios , Animais , Células Cultivadas , Ratos
6.
Adv Sci (Weinh) ; 8(15): e2100805, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34050637

RESUMO

Current treatment approaches toward spinal cord injuries (SCI) have mainly focused on overcoming the inhibitory microenvironment that surrounds lesion sites. Unfortunately, the mere modulation of the cell/tissue microenvironment is often insufficient to achieve desired functional recovery. Therefore, stimulating the intrinsic growth ability of injured neurons becomes crucial. MicroRNAs (miRs) play significant roles during axon regeneration by regulating local protein synthesis at growth cones. However, one challenge of using miRs to treat SCI is the lack of efficient delivery approaches. Here, a 3D fiber-hydrogel scaffold is introduced which can be directly implanted into a spinal cord transected rat. This 3D scaffold consists of aligned electrospun fibers which provide topographical cues to direct axon regeneration, and collagen matrix which enables a sustained delivery of miRs. Correspondingly, treatment with Axon miRs (i.e., a cocktail of miR-132/miR-222/miR-431) significantly enhances axon regeneration. Moreover, administration of Axon miRs along with anti-inflammatory drug, methylprednisolone, synergistically enhances functional recovery. Additionally, this combined treatment also decreases the expression of pro-inflammatory genes and enhance gene expressions related to extracellular matrix deposition. Finally, increased Axon miRs dosage with methylprednisolone, significantly promotes functional recovery and remyelination. Altogether, scaffold-mediated Axon miR treatment with methylprednisolone is a promising therapeutic approach for SCI.


Assuntos
Axônios/metabolismo , Técnicas de Transferência de Genes , Hidrogéis/metabolismo , MicroRNAs/metabolismo , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/fisiologia , Alicerces Teciduais/química , Animais , Modelos Animais de Doenças , Metilprednisolona/administração & dosagem , Nanofibras/química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
7.
ACS Appl Bio Mater ; 4(5): 4079-4083, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006824

RESUMO

Although cell membrane-coated fiber scaffolds can be useful for regenerative medicine by presenting both cell surface antigens and topographical cues, it remains unknown whether changes in cellular behavior on cell membrane-coated scaffolds are due to specific cell-cell interactions. In this work, the effects of scaffold fiber diameters and surface charges on the cell membrane coating efficiency were explored. Furthermore, fibroblast membrane-coated scaffolds improved the growth of human keratinocytes as compared to red blood cell membrane-coated and plain scaffolds. These results suggest the biofunctionality of cell membrane-coated scaffolds and the specific cell-cell interactions that are preserved to modulate cellular response.


Assuntos
Membrana Celular/química , Materiais Revestidos Biocompatíveis/química , Queratinócitos/química , Engenharia Tecidual , Humanos , Teste de Materiais , Tamanho da Partícula , Alicerces Teciduais/química
8.
Acta Biomater ; 136: 111-123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551327

RESUMO

A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action. We demonstrate that GV8 hydrogels loaded with adipose-derived mesenchymal stem cells (ADMSC) secretome remain mechanically robust, and exhibit promising potential for wound healing applications by preserving secretome activity while maintaining a constant supply of ADMSC secretome to promote epithelial cell migration. Overall, our work highlights the potential of GV8 peptide hydrogel as a versatile and safe carrier for encapsulation and delivery of macromolecular therapeutics. STATEMENT OF SIGNIFICANCE: Supramolecular peptide hydrogels are a popular choice for protein-based macromolecular therapeutics delivery; however, despite the development of abundant hydrogel systems, several challenges limit their adaptability and practical applications. GV8 short peptide hydrogel circumvents these drawbacks and demonstrates the ability to function as a versatile growth factor (GF) encapsulant. It can encapsulate precise concentrations of complex adipose-derived mesenchymal stem cells secretome mixtures with a one-pot formulation approach and perform controlled release of GFs with preserved activity without compromising the self-assembly and mechanical properties of the hydrogel's supramolecular network. The significance of GV8 hydrogel lies in its gelation simplicity and versatility to encapsulate and deliver macromolecular therapeutics, thus representing a promising biomaterial for regenerative medicine applications.


Assuntos
Hidrogéis , Secretoma , Preparações de Ação Retardada , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos
9.
Biomater Sci ; 8(22): 6286-6300, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33020773

RESUMO

The regeneration of injured neurons over long injury distances remains suboptimal. In order to successfully stimulate nerve regrowth, potent biomolecules are necessary. Furthermore, reproducible and translatable methods to test the potency of candidate drugs for enhancing nerve regeneration over long axotomy distances are also needed. To address these issues, we report a novel laser microdissection-based axotomy model that involves the use of biomimicking aligned fiber substrates to precisely control neuronal axotomy distances. Correspondingly, we demonstrate that in the absence of therapeutics, dorsal root ganglion (DRG) explants (consisting of neurons) axotomized within short distances from the main cell somas regenerated significantly longer than axons that were injured more distally (p < 0.05). However, when treated with a cocktail of microRNAs (miR-132/miR-222/miR-431), robust neurite outgrowth was observed (p < 0.05). Specifically, microRNA treatment promoted neurite outgrowth by ∼2.2-fold as compared to untreated cells and this enhancement was more significant under the less conducive regeneration condition of a long axotomy distance (i.e. 1000 µm from the cell soma). Besides that, we demonstrated that the treatment of miR-132/miR-222/miR-431 led to a longer length of nerve regeneration as well as a bigger nerve extension area after sciatic nerve transection injury. These results indicate that distance effects on axonal regrowth may be overcome by the effects of microRNAs and that these microRNAs may serve as promising therapeutics for nerve injury treatment.


Assuntos
Axônios , MicroRNAs , Animais , Axotomia , Feminino , Lasers , MicroRNAs/genética , Microdissecção , Regeneração Nervosa , Ratos Sprague-Dawley
10.
J Tissue Eng ; 11: 2041731420939224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670539

RESUMO

Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.

11.
Adv Healthc Mater ; 9(3): e1901257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854130

RESUMO

Biomedical implant failure due to the host's response remains a challenging problem. In particular, the formation of the fibrous capsule is a common barrier for the normal function of implants. Currently, there is mounting evidence indicating that the polarization state of macrophages plays an important role in effecting the foreign body reaction (FBR). This opens up a potential avenue for improving host-implant integration. Here, electrospun poly(caprolactone-co-ethyl ethylene phosphate) nanofiber scaffolds are utilized to deliver microRNAs (miRs) to induce macrophage polarization and modulate FBR. Specifically, C57BL/6 mice that are treated with M2-inducing miRs, Let-7c and miR-124, display relatively thinner fibrous capsule formation around the scaffolds at both Week 2 and 4, as compared to treatment with M1-inducing miR, Anti-Let-7c. Histological analysis shows that the density of blood vessels in the scaffolds are the highest in miR-124 treatment group, followed by Anti-Let-7c and Let-7c treatment groups. Based on immunohistochemical quantifications, these miR-encapsulated nanofiber scaffolds are useful for localized and sustained delivery of functional miRs and are able to modulate macrophage polarization during the first 2 weeks of implantation to result in significant alteration in host-implant integration at longer time points.


Assuntos
Macrófagos/fisiologia , MicroRNAs/administração & dosagem , Nanofibras/química , Próteses e Implantes/efeitos adversos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Feminino , Reação a Corpo Estranho/prevenção & controle , Técnicas de Transferência de Genes , Macrófagos/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Organofosfatos/química , Poliésteres/química
12.
Biomater Sci ; 7(6): 2623, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31045191

RESUMO

Correction for 'Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells' by Wai Hon Chooi et al., Biomater. Sci., 2018, 6, 3019-3029.

13.
Adv Sci (Weinh) ; 6(9): 1800808, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31065509

RESUMO

MicroRNAs effectively modulate protein expression and cellular response. Unfortunately, the lack of robust nonviral delivery platforms has limited the therapeutic application of microRNAs. Additionally, there is a shortage of drug-screening platforms that are directly translatable from in vitro to in vivo. Here, a fiber substrate that provides nonviral delivery of microRNAs for in vitro and in vivo microRNA screening is introduced. As a proof of concept, difficult-to-transfect primary neurons are targeted and the efficacy of this system is evaluated in a rat spinal cord injury model. With this platform, enhanced gene-silencing is achieved in neurons as compared to conventional bolus delivery (p < 0.05). Thereafter, four well-recognized microRNAs (miR-21, miR-222, miR-132, and miR-431) and their cocktails are screened systematically. Regardless of age and origin of the neurons, similar trends are observed. Next, this fiber substrate is translated into a 3D system for direct in vivo microRNA screening. Robust nerve ingrowth is observed as early as two weeks after scaffold implantation. Nerve regeneration in response to the microRNA cocktails is similar to in vitro experiments. Altogether, the potential of the fiber platform is demonstrated in providing effective microRNA screening and direct translation into in vivo applications.

14.
Biomater Sci ; 7(12): 5150-5160, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31580337

RESUMO

Clinically, rehabilitation is one of the most common treatment options for traumatic injuries. Despite that, recovery remains suboptimal and recent breakthroughs in regenerative approaches may potentially improve clinical outcomes. To date, there have been numerous studies on the utilization of either rehabilitative or regenerative strategies for traumatic injury treatment. However, studies that document the combined effects of rehabilitation and regenerative tissue engineering options remain scarce. Here, in the context of traumatic nerve injury treatment, we use a rat spinal cord injury (SCI) model as a proof of concept to evaluate the synergistic effects of regenerative tissue engineering and rehabilitation. Specifically, we implanted a pro-regenerative hybrid fiber-hydrogel scaffold and subjected SCI rats to intensive rehabilitation. Of note, the rehabilitation session was augmented by a novel customized training device that imparts normal hindlimb gait movements to rats. Morphologically, more regenerated axons were observed when rats received rehabilitation (∼2.5 times and ∼2 times enhancement after 4 and 12 weeks of recovery, respectively, p < 0.05). Besides that, we also observed a higher percentage of anti-inflammatory cells (36.1 ± 12.9% in rehab rats vs. 3.31 ± 1.48% in non-rehab rats, p < 0.05) and perineuronal net formation in rehab rats at Week 4. Physically, rehab animals were also able to exert higher ankle flexion force (∼0.779 N vs. ∼0.495 N at Week 4 and ∼1.36 N vs. ∼0.647 N at Week 12 for rehab vs. non-rehab rats, p < 0.001) and performed better than non-rehab rats in the open field test. Taken together, we conclude that coupling rehabilitation with regenerative scaffold implantation strategies can further promote functional recovery after traumatic nerve injuries.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Próteses e Implantes , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Alicerces Teciduais , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Feminino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia
15.
Sci Rep ; 8(1): 13057, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143711

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Biomater Sci ; 6(11): 3019-3029, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277233

RESUMO

The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized with siRNA targeting Re-1 silencing transcription factor (REST), by mussel-inspired bioadhesive coating. However, the efficacy of nanofiber-mediated RNA interference on hiPSC-NPCs differentiation remains unknown. Furthermore, interaction between such cell-seeded scaffolds with injured tissues has not been tested. In this study, scaffolds were optimized for REST knockdown in hiPSC-NPCs to enhance neuronal differentiation. Specifically, the effects of two different mussel-inspired bioadhesives and transfection reagents were analyzed. Scaffolds functionalized with RNAiMAX Lipofectamine-siREST complexes enhanced the differentiation of hiPSC-NPCs into TUJ1+ cells (60% as compared to 22% in controls with scrambled siNEG after 9 days) without inducing high cytotoxicity. When cell-seeded scaffolds were transplanted to transected spinal cord organotypic slices, similar efficiency in neuronal differentiation was observed. The scaffolds also supported the migration of cells and neurite outgrowth from the spinal cord slices. Taken together, the results suggest that this scaffold can be effective in enhancing hiPSC-NPC neuronal commitment by gene-silencing for the treatment of injured spinal cords.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Adesão Celular/genética , Diferenciação Celular/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Humanos , Neuritos/metabolismo
17.
Acta Biomater ; 76: 164-177, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890267

RESUMO

A low toxicity and efficient delivery system is needed to deliver small interfering RNAs (siRNA) in vitro and in vivo. The use of mesoporous silica nanoparticles (MSN) is becoming increasingly common due to its biocompatibility, tunable pore size and customizable properties. However, bolus delivery of siRNA/MSN complexes remains suboptimal, especially when a sustained and long-term administration is required. Here, we utilized electrospun scaffolds for sustained delivery of siRNA/MSN-PEI through surface adsorption and nanofiber encapsulation. As a proof-of-concept, we targeted collagen type I expression to modulate fibrous capsule formation. Surface adsorption of siRNA/MSN-PEI provided sustained availability of siRNA for at least 30 days in vitro. As compared to conventional bolus delivery, such scaffold-mediated transfection provided more effective gene silencing (p < 0.05). On the contrary, a longer sustained release was attained (at least 5 months) when siRNA/MSN-PEI complexes were encapsulated within the electrospun fibers. In vivo subcutaneous implantation and biodistribution analysis of these scaffolds revealed that siRNA remained localized up to ∼290 µm from the implants. Finally, a fibrous capsule reduction of ∼45.8% was observed after 4 weeks in vivo as compared to negative scrambled siRNA treatment. Taken together, these results demonstrate the efficacy of scaffold-mediated sustained delivery of siRNA/MSN-PEI for long-term non-viral gene silencing applications. STATEMENT OF SIGNIFICANCE: The bolus delivery of siRNA/mesoporous silica nanoparticles (MSN) complexes shows high efficiency to silence protein agonists of tumoral processes as cancer treatments. However, in tissue engineering area, scaffold mediated delivery is desired to achieve a local and sustained release of therapeutics. We showed the feasibility and the efficacy of siRNA/MSN delivered from electrospun scaffolds through surface adsorption and nanofiber encapsulation. We showed that this method enhances siRNA transfection efficiency and sustained targeted proteins silencing in vitro and in vivo. As a proof of concept, in this study, we targeted collagen type I expression to modulate fibrous capsule formation. However this platform can be applied to the release and transfection of siRNA or miRNA in cancer and tissue engineering applications.


Assuntos
Inativação Gênica/efeitos dos fármacos , Nanofibras/química , Nanopartículas/química , RNA Interferente Pequeno , Dióxido de Silício , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Feminino , Porosidade , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Fatores de Tempo
18.
Acta Biomater ; 75: 152-160, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885526

RESUMO

Our ability to rescue functional deficits after demyelinating diseases or spinal cord injuries is limited by our lack of understanding of the complex remyelination process, which is crucial to functional recovery. In this study, we developed an electrospun suspended poly(ε-caprolactone) microfiber platform to enable the screening of therapeutics for remyelination. As a proof of concept, this platform employed scaffold-mediated non-viral delivery of a microRNA (miR) cocktail to promote oligodendrocyte precursor cells (OPCs) differentiation and myelination. We observed enhanced OPCs differentiation when the cells were transfected with miR-219 and miR-338 on the microfiber substrates. Moreover, miRs promoted the formation of MBP+ tubular extensions around the suspended fibers, which was indicative of myelination, instead of flat myelin membranes on 2D substrates. In addition, OPCs that were transfected with the cocktail of miRs formed significantly longer and larger amounts of MBP+ extensions. Taken together, these results demonstrate the efficacy of this functional screening platform for understanding myelination. STATEMENT OF SIGNIFICANCE: The lack of understanding of the complex myelination process has hindered the discovery of effective therapeutic treatments for demyelinating diseases. Hence, in vitro models that enable systematic understanding, visualization and quantification of myelination are valuable. Unfortunately, achieving reproducible in vitro myelination by oligodendrocytes (OLs) remains highly challenging. Here, we engineered a suspended microfiber platform that enables sustained non-viral drug/gene delivery to study OL differentiation and myelination. Sustained drug delivery permits the investigation of OL development, which spans several weeks. We show that promyelinogenic microRNAs promoted OL differentiation and myelination on this platform. Our engineered microfiber substrate could serve as a drug/gene screening platform and facilitate future translation into direct implantable devices for in vivo remyelination purposes.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , MicroRNAs , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Animais , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/farmacologia , Células Precursoras de Oligodendrócitos/citologia , Ratos
19.
Sci Rep ; 7: 42212, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169354

RESUMO

Spinal cord injuries (SCI) often lead to persistent neurological dysfunction due to failure in axon regeneration. Unfortunately, currently established treatments, such as direct drug administration, do not effectively treat SCI due to rapid drug clearance from our bodies. Here, we introduce a three-dimensional aligned nanofibers-hydrogel scaffold as a bio-functionalized platform to provide sustained non-viral delivery of proteins and nucleic acid therapeutics (small non-coding RNAs), along with synergistic contact guidance for nerve injury treatment. A hemi-incision model at cervical level 5 in the rat spinal cord was chosen to evaluate the efficacy of this scaffold design. Specifically, aligned axon regeneration was observed as early as one week post-injury. In addition, no excessive inflammatory response and scar tissue formation was triggered. Taken together, our results demonstrate the potential of our scaffold for neural tissue engineering applications.


Assuntos
Axônios/patologia , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Hidrogéis/química , Imageamento Tridimensional , Nanofibras/química , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Feminino , Filamentos Intermediários/metabolismo , Ratos Sprague-Dawley , Remielinização , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA