Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Phys Chem Chem Phys ; 24(10): 5914-5920, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195628

RESUMO

The photodissociation dynamics of isohaloethane (1-bromo-2-chloro-1,1,2-trifluoroethane) at 234 nm was studied by a sliced imaging technique combined with an oriented molecular beam. The speed and angular distributions of the competitive products of spin-orbit selected Br and Cl atoms were determined by analysis of the obtained images. The anisotropic parameter, ß, was found to be 2.0 ± 0.2 for the excited state of Br(2P1/2) (Br*) and 1.2 ± 0.3 for the ground state of Br(2P3/2) (Br). The speed distributions for both Br and Br* exhibited Gaussian-like characteristics. These results indicate that Br atoms were generated by direct formation after excitation through the nσ*(C-Br) potential energy surfaces. In contrast, the angular distributions for the Cl fragments were almost isotropic, while the speed distributions displayed Boltzmann-like characteristics. This suggests that the Cl atoms may form through long-lived parent molecules after photoexcitation. The branching ratio for Br and Cl atom formation was found to be approximately 1.2, that is, Br atom formation occurred preferentially, in contrast to the case of halothane photodissociation reported in our previous work [Che et al., J. Phys. Chem. A, 2020, 124, 5288]. A vector correlation study between the laser polarization axis and the direction of the dipole moment revealed a similar tendency for all photofragments, suggesting that the fragments were formed through a common excited state of isohaloethane. The vector correlation was also studied theoretically for comparison with the experimental results. The angle between the transition dipole moment in photodissociation and the permanent dipole moment was found to be 42 ± 15°. The obtained results indicate that this vector correlation approach combined with an oriented molecular beam is a powerful tool for determining the transition dipole moments in photodissociation.

2.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164025

RESUMO

Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties, such as significantly enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of these advantages, nanocomposites have been used in a variety of applications, including catalysts, electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years, notably in the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further; we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.

3.
Phys Chem Chem Phys ; 23(10): 6098-6106, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683243

RESUMO

Photodissociation of di- and tri-halogenated methanes including CH2BrCl and CHBr2Cl at 248 nm was investigated using cavity ringdown absorption spectroscopy (CRDS). The spectra of the BrCl(v'' = 2, 3) and Br2(v'' = 1, 2) fragments were probed over the wavelength range of 594.5-596 nm in the B3Π+0u ← X1Σ+g and B3Π (0+) ← X1Σ+ transitions, respectively. Their corresponding spectra were simulated for assignment of rotational lines at a given vibrational level. The quantum yields for Br2 eliminated from CHBr2Cl and BrCl from CH2BrCl were determined to be 0.048 ± 0.018 and 0.037 ± 0.014, respectively. The photodissociation of CHBr2Cl yielded only the Br2 fragment, but not the BrCl fragment in the experiments. An ab initio theoretical method based on the CCSD(T)//B3LYP/6-311g(d,p) level was employed to evaluate the potential energy surface for the dissociation pathways to produce Br2 and BrCl from CHBr2Cl, which encountered a transition state barrier of 445 and 484 kJ mol-1, respectively. The corresponding RRKM rate constants were calculated to show that the branching ratio of (Br2/BrCl) is ∼20. The BrCl spectrum is expected to be obscured by the much larger Br2 spectrum, explaining why BrCl fragments cannot be detected in the photolysis of CHBr2Cl.

4.
Phys Chem Chem Phys ; 23(39): 22492-22500, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590099

RESUMO

The photodissociation of 2,3-dibromopropionyl chloride (CH2BrCHBrC(O)Cl, 2,3-DBPC) at 248 nm was carried out to study Br2 as the primary molecular product in the B3Π+0u ← X1Σ+g transition using cavity ring-down absorption spectroscopy. The rotational spectra (v'' = 0-2) were acquired and assigned with the aid of spectral simulation. It is verified that the obtained Br2 fragment is attributed to the one-photon dissociation of 2,3-DBPC and is free from contributions of secondary reactions. The vibrational ratio of the Br2 population of v(0):v(1):v(2) is equal to 1:(0.58 ± 0.12):(0.23 ± 0.09), corresponding to the Boltzmann vibrational temperature of 623 ± 38 K. The quantum yield of Br2 eliminated from 2,3-DBPC is estimated to be 0.09 ± 0.04. The dissociation pathways of 2,3-DBPC and its potential energy surfaces were calculated using density functional theory. By employing the CCSD(T)//M062X/6-31+g(d,p) level of theory, transition state barriers and corresponding reaction energies were calculated for the Br, Cl, Br2, BrCl, HBr and HCl elimination channels. The unimolecular rate constant for Br2 elimination was determined to be 2.09 × 105 s-1 using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, thus explaining the small quantum yield of the Br2 channel.

5.
Small ; 16(1): e1905767, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769599

RESUMO

Since the past decade, enormous research efforts have been devoted to the detection/degradation and quantification of environmental toxic pollutants and biologically important molecules due to their ubiquitous necessity in the fields of environmental protection and human health. These fields of sensor and catalysis are advanced to a new era after emerging of nanomaterials, especially, carbon nanomaterials including graphene, carbon nanotube, carbon dots (C-dots), etc. Among them, the C-dots in the carbon family are rapidly boosted in the aspect of synthesis and application due to their superior properties of chemical and photostability, highly fluorescent with tunable, non/low-toxicity, and biocompatibility. The C-dot-based functional materials have shown great potential in sensor and catalysis fields for the detection/degradation of environmental pollutants. The major advantage of C-dots is that they can be easily prepared from numerous biomass/waste materials which are inexpensive and environment-friendly and are suitable for a developing trend of sustainable materials. This review is devoted to the recent development (since 2017) in the synthesis of biomass- and chemical-derived C-dots as well as diverse functionalization of C-dots. Their capability as a sensor and catalyst and respective mechanism are summarized. The future perspectives of C-dots are also discussed.


Assuntos
Carbono/química , Pontos Quânticos/química , Catálise , Poluentes Ambientais/toxicidade , Humanos
6.
Langmuir ; 36(46): 13949-13962, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33174747

RESUMO

A new electrochemical sensor has been constructed based on the in situ preparation of gold nanoparticle embedded on reduced graphene oxide and polypyrrole nanotube (AuNP@rGO/PPyNT) composite through a nanosecond laser-induced heating technique. The as-prepared composite is used for individual as well as the simultaneous electrochemical determination of chemotherapy drug (furazolidone, FU) and anticancer drug (flutamide, FLT). The composite was analyzed by X-ray Diffraction, scanning electron microscopy/energy-dispersive X-ray analysis, transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectroscopy analysis, thus confirming the successful synthesis of this composite and its physical features. The modified AuNP@rGO/PPyNT electrode was examined through cyclic voltammetry and differential pulse voltammetry (DPV) methods in pH 7.0 for the determination of FU and FLT in individual, simultaneous, and mixed systems. The fabricated sensor showed wide linear responses (0.01-1080.11 µM and 0.01-1214.11 µM) of analytes, with the lower limits of detection of 2.3 and 2.45 nM and higher sensitivity of 53.75 and 50.06 µA µM-1 cm-2, respectively. Furthermore, the constructed sensor demonstrates higher stability, reproducibility, and repeatability, and is effectively applied for the analysis of FU and FLT content in the human serum sample analysis with satisfactory recovery.

7.
J Phys Chem A ; 124(26): 5288-5296, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498517

RESUMO

A molecular beam of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) is focused by a hexapolar electrostatic field and photolyzed by UV laser radiation at 234 nm. Angular and speed distributions of chlorine and bromine photofragments emitted from halothane are measured for both spin-orbit states independently. Although the dissociation energy of the C-Cl bond is larger than that of C-Br, the relative yield of Cl to Br was found to be approximately 2. Measured speed and angular distributions of atomic fragments show distinct kinetic energy release and scattering characteristics: for bromine, observed fast and aligned fragments exhibit a signature of a direct mode of dissociation for the C-Br bond, via the electronically excited potential energy surface denoted nσ*(C-Br), of repulsive nature; for chlorine, a variation in the features is observed for the dissociation pathway through nσ*(C-Cl), from a modality similar to the bromine case, leading to fragments with appreciable kinetic energy release and pronounced directionality, to a modality involving slow products, nearly isotopically distributed. The origin of this behavior can be attributed to nonadiabatic interaction operating between the nσ*(C-Br) and nσ*(C-Cl) surfaces. These results are not only relevant for a detailed understanding of adiabatic versus diabatic coupling mechanisms in the manifold of excited states populated by photon absorption, but they also point out the possibility of selectively inducing specific dissociation pathways, even when involving energetically unfavorable outcomes, such as, in this case, the prevailing rupture of the stronger C-Cl bond against that of the weaker C-Br bond.

8.
Anal Chem ; 91(20): 13244-13250, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31542920

RESUMO

Developing a fluorescent probe for the selective and sensitive detection of explosives is a topic of continuous research interest. Additionally, underlying the principles behind the detection mechanism is indeed providing substantial information about the design of an efficient fluorescence probe. In this context, a pyrene-tethered 1-(pyridin-2-yl)imidazo[1,5-a]pyridine-based fluorescent probe (TL18) was developed and employed as a fluorescent chemosensor for nitro explosives. The molecular structure of TL18 was well-characterized by NMR and EI-MS spectrometric techniques. UV-visible absorption, steady-state, and time-resolved fluorescence spectroscopic techniques have been employed to explicate the photophysical properties of TL18. The fluorescent nature of the TL18 probe was explored for detection of nitro explosives. Intriguingly, the TL18 probe was selectively responsive to picric acid over other explosives. The quantitative analysis of the fluorescence titration studies of TL18 with picric acid proved that the probe achieved a detection limit of 63 nM. Further, DFT and QTAIM studies were used to establish the nature of the sensing mechanism of TL18. The hydrogen-bonding interactions are the reason for the imperative sensing property of TL18 for picric acid. Thus, our experimental and theoretical studies provide an adequate and appropriate prerequisite for an efficient fluorescent probe. Furthermore, a smartphone-interfaced portable fluorimeter module is developed to facilitate sensitive and real-time sensing of picric acid. This portable module was capable of detecting picric acid down to 99 nM. Eventually, these studies will have a significant impact on development and application of a new class of chemosensors for detection of explosives.


Assuntos
Substâncias Explosivas/análise , Corantes Fluorescentes/química , Picratos/análise , Pirenos/química , Smartphone , Corantes Fluorescentes/síntese química , Modelos Químicos , Pirenos/síntese química , Teoria Quântica , Espectrometria de Fluorescência
9.
Phys Chem Chem Phys ; 21(26): 13943-13949, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30137071

RESUMO

Photodissociation of CH2BrI was investigated in search of unimolecular elimination of BrI via a primary channel using cavity ring-down absorption spectroscopy (CRDS) at 248 nm. The BrI spectra were acquired involving the first three ground vibrational levels corresponding to A3Π1 ← X1Σ+ transition. With the aid of spectral simulation, the BrI rotational lines were assigned. The nascent vibrational populations for v'' = 0, 1, and 2 levels are obtained with a population ratio of 1 : (0.58 ± 0.10) : (0.34 ± 0.05), corresponding to a Boltzmann-like vibrational temperature of 713 ± 49 K. The quantum yield of the ground state BrI elimination reaction is determined to be 0.044 ± 0.014. The CCSD(T)//B3LYP/MIDI! method was employed to explore the potential energy surface for the unimolecular elimination of BrI from CH2BrI.

10.
Phys Chem Chem Phys ; 21(26): 14164-14172, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30350830

RESUMO

Molecular orientation techniques are becoming available in the study of elementary chemical processes, in order to highlight those structural and dynamical properties that would be concealed by random rotational motions. Recently successful orientation was achieved for asymmetric-top and chiral molecules of much larger complexity than hitherto. In this work, we report and discuss the correlation between the vectors' photofragment recoil velocity v, transition dipole moment µ, and permanent dipole moment d in a dissociation experiment on hexapole oriented 2-bromobutane, photoinitiated by a linearly polarized laser. The sliced ion images of the Br*(2P1/2) and Br(2P3/2) photofragments were acquired at 234.0 and 254.1 nm, respectively, by a (2 + 1) resonance-enhanced multiphoton ionization technique. A detailed analysis of the sliced ion images obtained at a tilting angle 45° of laser polarization provides information on the correlation of the three vectors, which are confined by two polar angles α and χ and one azimuthal angle φµd in the recoil frame. The sliced ion images of Br fragments eliminated individually from the enantiomers at 254.1 nm yield an asymmetric factor close to zero; for this reason the photofragment angular distributions do not show significant differences. The elimination of the Br* fragment at 234.0 nm is mainly correlated with a parallel transition, giving rise to a large anisotropy parameter of 1.85, and thus can be considered as a single state excitation. The resulting recoil frame angles are optimized to 163° ± 8° and 164° ± 1° for α and χ, respectively, whereas φµd is approaching 0° for the best fit. Since for the present molecule, the three vectors have an only slight spatial arrangement, the photofragment angular distributions of the two enantiomers do not show appreciable differences. Theoretical and computational simulations provide us the basis to state that oriented enantiomers can be discriminated on-the-fly in photodissociation processes even initiated by non-circularly polarized light, provided that the three vectors encountered above have specific three-dimensional arrangements. The fact that Br fragment elimination involves a multi-potential dissociation carries uncertainties in theoretical estimates of the vector direction. Therefore, this work represents a preliminary but significant step on the road to chiral discrimination on-the-fly, which is shown to be best propitiated in molecules where vectors are far from having degenerate mutual angular directions.

11.
J Phys Chem A ; 123(31): 6635-6644, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31177785

RESUMO

Both single-laser and two-laser experiments were conducted to look into the ion-imaging of Br*(2P1/2) and Br(2P3/2) photofragmented from 1-bromo-2-methylbutane in the range 232-240 nm via a detection scheme of (2+1) resonance-enhanced multiphoton ionization. The angular analysis of these photofragment distributions yields the anisotropy parameter ß = 1.88 ± 0.06 for the Br* excited state which arises from a parallel transition, while ß = 0.63 ± 0.09 for the Br ground state indicates the contribution from both a perpendicular transition and a non-adiabatic transition. When a hexapole coupled with an orienting field was implemented, the parent molecules are spatially oriented to yield an orientation efficiency |⟨cos Î¸⟩| of 0.15. Besides the χ angle between the recoil velocity v and the transition dipole moment µ, orienting molecules allows for the evaluation of the angle α between v and the permanent molecular dipole moment d. The angular analysis of Br* photofragment distribution yields χ = 11.5° and α in the range from 160° to 180° with weak dependency. In the two-laser experiments, the angular anisotropy of Br photofragment distribution was found to be smaller (0.38 ± 0.10) when the photolysis wavelength was red-shifted to 240 nm, suggesting the increasing contributions from perpendicular transitions.

12.
Mikrochim Acta ; 187(1): 17, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807937

RESUMO

The two-step microwave method was used to synthesize zinc oxide nanostars linked to graphene oxide (GO) nanosheets. The material was used to modify a screen printed carbon electrode (SPCE) and then explored as a binder-free electrocatalyst for the electrochemical determination of methyl parathion (MP). The morphology and crystallinity of the material were characterized by various techniques. The modified SPCE shows extraordinary electrochemical performances for sensitive determination of MP. Figures of merit include (a) a wide linear dynamic range (0.03-670 µM), (b) a low detection limit (1.2 nM; at S/N = 3), (c) a comparably low working voltage (-0.69 V vs. Ag/AgCl); and (d) an excellent sensitivity (16.5 µA µM-1 cm-2) that surpasses other modified electrodes. The sensor was successfully applied to the determination of MP, even in the presence of other common electroactive interference, in (spiked) fruits and vegetables. Graphical abstractGraphene oxide anchored three-dimensional zinc oxide nanostars were used to coat electrode for the sensing of methyl parathion (MP) by voltammetry.

13.
Mikrochim Acta ; 186(5): 299, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31025113

RESUMO

Palladium-copper nanoparticles were placed on activated carbon to give a nanocomposite for electrochemical sensing of riboflavin (vitamin B2). The activated carbon was produced by pyrolysis of natural waste of pistachio nutshells after KOH activation and under a nitrogen atmosphere. The carbons possess a large surface area and micro/meso-porosity. The nanocomposite was characterized by a variety of techniques to confirm structures and morphology. A screen-printed electrode modified with the composite was examined by EIS, CV, DPV, and amperometry. The effects of pH value, scan rate, and stability of the modified electrode were studied. Under optimized conditions, vitamin B2 displays a well-expressed oxidation peak at -0.15 V (vs. Ag/AgCl) in solutions with a pH value of 7.0. The voltammetric signal increases linearly in the 0.02 to 9 µM concentrations range and a lower detection limit of 7.6 pM. The sensor was successfully applied to the determination of vitamin B2 even in the presence of other common vitamins and in (spiked) raw milk samples. Graphical abstract A highly porous carbon was modified with palladium-copper alloy nanoparticles and used to coat an electrode for sensing of riboflavin (vitamin B2) by voltammetry.


Assuntos
Cobre/química , Eletroquímica/instrumentação , Nanopartículas Metálicas/química , Paládio/química , Riboflavina/análise , Catálise , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanocompostos/química , Oxirredução , Porosidade , Riboflavina/química
14.
J Phys Chem A ; 122(42): 8344-8353, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30278130

RESUMO

Iodine monochloride (ICl) elimination from one-photon dissociation of CH2ICl at 248 nm is monitored by cavity ring-down absorption spectroscopy (CRDS). The spectrum of ICl is acquired in the transition of B3Π0 ← X1Σ+ and is confirmed to result from a primary photodissociation, that is, CH2ICl + hν → CH2 + ICl. The vibrational population ratio is determined with the aid of spectral simulation to be 1:(0.36 ± 0.10):(0.11 ± 0.05) for the vibrational levels ν = 0, 1, and 2 in the ground electronic state, corresponding to a Boltzmann-like vibrational temperature of 535 ± 69 K. The quantum yield of the ICl molecular channel for the reaction is obtained to be 0.052 ± 0.026 using a relative method in which the scheme CH2Br2 → CH2 + Br2 is adopted as the reference reaction. The ICl product contributed by the secondary collisions is minimized such that its quantum yield obtained is not overestimated. With the aid of the CCSD(T)//B3LYP/MIDI! level of theory, the ICl elimination from CH2ICl is evaluated to follow three pathways via either (1) a three-center transition state or (2) two isomerization transition states. However, the three-center concerted mechanism is verified to be unfavorable.

15.
Sens Actuators B Chem ; 259: 339-346, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32288250

RESUMO

A highly sensitive and selective fluorogenic sensing of L-Cysteine (L-Cys) was implemented based on gelatin stabilized gold nanoparticles decorated reduced graphene oxide (rGO/Au) nanohybrid. The rGO/Au nanohybrid was prepared by the one-pot hydrothermal method and well characterized by different physiochemical techniques. The nanohybrid exhibits a weak fluorescence of rGO due to the energy transfer from the rGO to Au NPs. The rGO/Au nanohybrid shows enhanced fluorescence activity due to the restoration of quenched fluorescence of rGO/Au nanohybrid in presence of L-Cys. The rGO/Au nanohybrid exhibits much lower detection limit of 0.51 nM for L-Cys with higher selectivity. The fluorescence sensing mechanism arose from the fluorescence recovery due to the stronger interaction between Au NPs and L-Cys, and consequently, the energy transfer was prevented between rGO and Au NPs. The practicability of rGO/Au sensor was implemented by invitro bioimaging measurements in Colo-205 (colorectal adenocarcinoma) and MKN-45 (gastric carcinoma) cancer live cells with excellent biocompatibility.

16.
Mikrochim Acta ; 185(8): 395, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30062660

RESUMO

Nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles (Ni/N-MWCNT) were prepared by a thermal reduction process starting from urea and Ni(II) salt in an inert atmosphere. The nanocomposite was deposited on a screen printed electrode and characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and thermogravimetric analyses. The performance of the composite was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The numerous active metal sites with fast electron transfer properties result in enhanced electrocatalytic activity towards the individual and simultaneous detection of catechol (CC) and hydroquinone (HQ), best at 0.21 V for CC and 0.11 V for HQ (vs. Ag/AgCl). For both targets the detection limit (S/N of 3) was 9 nM (CC) and 11 nM (HQ), and the Ni/N-MWCNT-electrode showed linear response from 0.1-300 µM CC, and 0.3-300 µM HQ. The electrode is selective over many potentially interfering ions. It was applied to the analysis of spiked water samples and gave satisfactory recoveries. It also is sensitive for CC (5.396 µA·µM-1 cm-2) and HQ (5.1577 µA·µM-1 cm-2), highly active, durable, acceptably repeatable and highly reproducible. Graphical abstract Voltammetric determination of catechol and hydroquinone using nitrogen-doped multiwalled carbon nanotubes modified with nickel nanoparticles.

17.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28092434

RESUMO

Single-molecule fluorescence correlation spectroscopy overcomes the resolution barrier of optical microscopy (10≈-20 nm) and is utilized to look into lipid dynamics in small unilamellar vesicles (SUVs; diameter < 100 nm). The fluorescence trajectories of lipid-like tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) in the membrane bilayers are acquired at a single-molecule level. The autocorrelation analysis yields the kinetic information on lipid organization, oxygen transport, and lateral diffusion in SUVs' membrane. First, the isomerization feasibility may be restricted by the addition of cholesterols, which form structure conjugation with DiD chromophore. Second, the oxygen transport is prevented from the ultrasmall cluster and cholesterol-rich regions, whereas it can pass through the membrane region with liquid-disordered phase (Ld ) and defects. Third, by analyzing 2D spectra correlating the lipid diffusion coefficient and triplet-state lifetime, the heterogeneity in lipid bilayer can be precisely visualized such as lipid domain with different phases, the defects of lipid packing, and DiD-induced "bouquet" ultrasmall clusters.

18.
Phys Chem Chem Phys ; 19(28): 18628-18634, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28692092

RESUMO

Quasi-classical trajectory (QCT) calculations are performed on the molecular products CO + CH4via the tight transition state (TS) and global minimum configurations. With the aid of this theoretical evidence, we have re-examined the experimental results published previously to clarify the controversial issue of photodissociation dynamics of CH3CHO at 248 nm. For the CO (v = 0 and 1) bimodal rotational distributions obtained previously [K.-C. Hung, P.-Y. Tsai, H.-K. Li, and K.-C. Lin, J. Chem. Phys., 2014, 140, 064313], the low-rotational (J) component is re-assigned to the contribution of triple fragmentation (H + CO + CH3), whereas the high-J component is ascribed to the CH3-roaming pathway. The H-roaming pathway is not found in the calculations. Further, the QCT results have confirmed that the CO vibrational population especially at higher states and the low-energy component of CH4 vibrational bimodality obtained experimentally are mainly produced following the TS pathway, which has never been identified before. While taking into account both the theoretical and experimental results, the ratio of the molecular products (CO(v = 1) + CH4) obtained by the triple fragmentation/roaming/TS processes is evaluated to be 0.23 : 1 : 0.29.

19.
J Phys Chem A ; 121(15): 2888-2895, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28335599

RESUMO

Cavity ring-down absorption spectroscopy (CRDS) is employed to investigate one-photon dissociation of (COCl)2 at 248 nm obtaining a primary Cl2 elimination channel. A ratio of vibrational population is estimated to be 1:(0.12 ± 0.03):(0.011 ± 0.003) for the v = 0, 1, and 2 levels. The quantum yield of Cl2 molecular channel is obtained to be 0.8 ± 0.4 initiated from the X̃ 1Ag ground state surface (COCl)2 via internal conversion. The obtained total quantum yield is attributed to both primary ((COCl)2 + hν → 2CO + Cl2) and secondary reactions (dominated by Cl + COCl → Cl2 + CO). The former is estimated to share a yield of >0.14, while the latter contributes up to 0.66. The photodissociation pathway to the molecular products is calculated to proceed via a four-center transition state (TS) from which Cl2 is eliminated synchronously. Installation of the mirrors with reflectivity of 99.995% in the CRDS apparatus prolongs the ring-down time to 70 µs, thus allowing for the contribution from 17% up to 66% of the total Cl2 yield from secondary reaction depending on the reaction temperature. Despite uncertainty in determining the product yield, the primary Cl2 dissociation channel eliminated from (COCl)2 is observed for the first time.

20.
J Chem Phys ; 147(1): 013917, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688394

RESUMO

The asymmetric-top molecule 2-bromobutane is oriented by means of a hexapole state selector; the angular distribution of the bromine atom photofragment, for the two fine-structure components, is acquired by velocity-map ion imaging. The molecular beam, spatially oriented along the time-of-flight axis, is intersected with a linearly polarized laser, whose polarization is tilted by 45° with respect to the detector surface. To obtain the mixing ratio of the perpendicular and parallel transitions, the fragment ion images and angular distributions can be appropriately simulated to give insight on the population mechanism of the specific electronic state involved at each selected excitation wavelength. The photofragment images obtained at 238.6 nm yielded an asymmetry factor ß1 of 0.67, indicative of the extent of molecular orientation, and an anisotropy parameter ß2 of 1.03, which is a signature of a prevailing parallel transition along the C-Br axis. When the photolysis wavelength is tuned to 254.1 nm, the corresponding angular distribution is less asymmetric (ß1 = 0.24) and the obtained small value ß2 = 0.12 is a characteristic of a predominantly perpendicular transition. The photofragment angular distributions are also affected by hexapole voltage, especially regarding the asymmetry factor, and this aspect provides information on the effect of molecular orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA