Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Appl Microbiol Biotechnol ; 106(5-6): 1991-2006, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35230495

RESUMO

The regulation of enzyme activity through complexation with certain metal ions plays an important role in many biological processes. In addition to divalent metals, monovalent cations (MVCs) frequently function as promoters for efficient biocatalysis. Here, we examined the effect of MVCs on the enzymatic catalysis of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis ATCC 27,811 and the application of a metal-activated enzyme to L-theanine synthesis. The transpeptidase activity of BlrGGT was enhanced by Cs+ and Na+ over a broad range of concentrations with a maximum of 200 mM. The activation was essentially independent of the ionic radius, but K+ contributed the least to enhancing the catalytic efficiency. The secondary structure of BlrGGT remained mostly unchanged in the presence of different concentrations of MVCs, but there was a significant change in its tertiary structure under the same conditions. Compared with the control, the half-life (t1/2) of the Cs+-enriched enzyme at 60 and 65 °C was shown to increase from 16.3 and 4.0 min to 74.5 and 14.3 min, respectively. The simultaneous addition of Cs+ and Mg2+ ions exerted a synergistic effect on the activation of BlrGGT. This was adequately reflected by an improvement in the conversion of substrates to L-theanine by 3.3-15.1% upon the addition of 200 mM MgCl2 into a reaction mixture comprising the freshly desalted enzyme (25 µg/mL), 250 mM L-glutamine, 600 mM ethylamine, 200 mM each of the MVCs, and 50 mM borate buffer (pH 10.5). Taken together, our results provide interesting insights into the complexation of MVCs with BlrGGT and can therefore be potentially useful to the biocatalytic production of naturally occurring γ-glutamyl compounds. KEY POINTS: • The transpeptidase activity of B. licheniformis Î³-glutamyltranspeptidase can be activated by monovalent cations. • The thermal stability of the enzyme was profoundly increased in the presence of 200 mM Cs+. • The simultaneous addition of Cs+and Mg2+ions to the reaction mixture improves L-theanine production.


Assuntos
Bacillus licheniformis , Bacillus licheniformis/genética , Cátions Monovalentes , Glutamina , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética
2.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344929

RESUMO

In this study, silica-coated magnetic nanoparticles (SiMNPs) with isocyanatopropyltriethoxysilane as a metal-chelating ligand were prepared for the immobilization of His6-tagged Escherichia coli prolidase (His6-EcPepQ). Under one-hour coupling, the enzyme-loading capacity for the Ni2+-functionalized SiMNPs (NiNTASiMNPs) was 1.5 mg/mg support, corresponding to about 58.6% recovery of the initial activity. Native and enzyme-bound NiNTASiMNPs were subsequently characterized by transmission electron microscopy (TEM), superparamagnetic analysis, X-ray diffraction, and Fourier transform infrared (FTIR) spectroscopy. As compared to free enzyme, His6-EcPepQ@NiNTASiMNPs had significantly higher activity at 70 °C and pH ranges of 5.5 to 10, and exhibited a greater stability during a storage period of 60 days and could be recycled 20 times with approximately 80% retention of the initial activity. The immobilized enzyme was further applied in the hydrolysis of two different organophosphorus compounds, dimethyl p-nitrophenyl phosphate (methyl paraoxon) and diethyl p-nitrophenyl phosphate (ethyl paraoxon). The experimental results showed that methyl paraoxon was a preferred substrate for His6-EcPepQ and the kinetic behavior of free and immobilized enzymes towards this substance was obviously different. Taken together, the immobilization strategy surely provides an efficient means to deposit active enzymes onto NiNTASiMNPs for His6-EcPepQ-mediated biocatalysis.


Assuntos
Quelantes/química , Dipeptidases/química , Nanopartículas de Magnetita/química , Compostos Organofosforados/química , Hidrólise , Íons/química , Metais/química , Compostos Organofosforados/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Biochim Biophys Acta ; 1864(2): 195-203, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26536828

RESUMO

γ-Glutamyl transpeptidases (γ-GTs) are members of N-terminal nucleophile hydrolase superfamily. They are synthetized as single-chain precursors, which are then cleaved to form mature enzymes. Basic aspects of autocatalytic processing of these pro-enzymes are still unknown. Here we describe the X-ray structure of the precursor mimic of Bacillus licheniformis γ-GT (BlGT), obtained by mutating catalytically important threonine to alanine (T399A-BlGT), and report results of autoprocessing of mutants of His401, Thr415, Thr417, Glu419 and Arg571. Data suggest that Thr417 is in a competent position to activate the catalytic threonine (Thr399) for nucleophilic attack of the scissile peptide bond and that Thr415 plays a major role in assisting the process. On the basis of these new structural results, a possible mechanism of autoprocessing is proposed. This mechanism, which guesses the existence of a six-membered transition state involving one carbonyl and two hydroxyl groups, is in agreement with all the available experimental data collected on γ-GTs from different species and with our new Ala-scanning mutagenesis data.


Assuntos
Sequência de Aminoácidos/genética , Bacillus/enzimologia , Conformação Proteica , gama-Glutamiltransferase/química , Alanina/química , Catálise , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , gama-Glutamiltransferase/genética
4.
Biochim Biophys Acta ; 1844(9): 1523-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24780583

RESUMO

γ-Glutamyltranspeptidases (γ-GTs) cleave the γ-glutamyl amide bond of glutathione and transfer the released γ-glutamyl group to water (hydrolysis) or acceptor amino acids (transpeptidation). These ubiquitous enzymes play a key role in the biosynthesis and degradation of glutathione, and in xenobiotic detoxification. Here we report the 3Šresolution crystal structure of Bacillus licheniformis γ-GT (BlGT) and that of its complex with l-Glu. X-ray structures confirm that BlGT belongs to the N-terminal nucleophilic hydrolase superfamily and reveal that the protein possesses an opened active site cleft similar to that reported for the homologous enzyme from Bacillus subtilis, but different from those observed for human γ-GT and for γ-GTs from other microorganisms. Data suggest that the binding of l-Glu induces a reordering of the C-terminal tail of BlGT large subunit and allow the identification of a cluster of acid residues that are potentially involved in the recognition of a metal ion. The role of these residues on the conformational stability of BlGT has been studied by characterizing the autoprocessing, enzymatic activity, chemical and thermal denaturation of four new Ala single mutants. The results show that replacement of Asp568 with an Ala affects both the autoprocessing and structural stability of the protein.


Assuntos
Bacillus/química , Proteínas de Bactérias/química , Ácido Glutâmico/química , Magnésio/química , Subunidades Proteicas/química , gama-Glutamiltransferase/química , Alanina/química , Alanina/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Bacillus/enzimologia , Bacillus subtilis/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cátions Bivalentes , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Cinética , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
5.
Biochim Biophys Acta ; 1844(12): 2290-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218521

RESUMO

γ-Glutamyl transpeptidases (γ-GTs, EC 2.3.2.2) are a class of ubiquitous enzymes which initiate the cleavage of extracellular glutathione (γ-Glu-Cys-Gly, GSH) into its constituent glutamate, cysteine, and glycine and catalyze the transfer of its γ-glutamyl group to water (hydrolysis), amino acids or small peptides (transpeptidation). These proteins utilize a conserved Thr residue to process their chains into a large and a small subunit that then form the catalytically competent enzyme. Multiple sequence alignments have shown that some bacterial γ-GTs, including that from Bacillus licheniformis (BlGT), possess an extra sequence at the C-terminal tail of the large subunit, whose role is unknown. Here, autoprocessing, structure, catalytic activity and stability against both temperature and the chemical denaturant guanidinium hydrochloride of six BlGT extra-sequence deletion mutants have been characterized by SDS-PAGE, circular dichroism, intrinsic fluorescence and homology modeling. Data suggest that the extra sequence has a crucial role in enzyme activation and structural stability. Our results assist in the development of a structure-based interpretation of the autoprocessing reaction of γ-GTs and are helpful to unveil the molecular bases of their structural stability.

6.
J Biol Phys ; 40(1): 25-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24165863

RESUMO

In the present study, the biophysical properties of His6-tagged Bacillus stearothermophilus aminopeptidase II (His6-tagged BsAmpII) are characterized in detail by gel-filtration, analytical ultracentrifugation, and various spectroscopic techniques. Using size-exclusion chromatography and analytical ultracentrifugation, we demonstrate that His6-tagged BsAmpII exists predominantly as a dimer in solution. The enzyme is active and stable at pHs ranging from 6.5 to 8.5. Far-UV circular dichroism analysis reveals that the secondary structures of His6-tagged BsAmpII are significantly altered in the presence of SDS, whereas the presence of 5-10% acetone and ethanol was harmless to the folding of the enzyme. Thermal unfolding of His6-tagged BsAmpII was found to be irreversible and led to the formation of aggregates. The native enzyme started to unfold beyond 0.6 M guanidine hydrochloride and had a midpoint of denaturation at 1.34 M. This protein remained active at concentrations of urea below 2.7 M but experienced an irreversible unfolding by >5 M denaturant. Taken together, this work lays a foundation for potential biotechnological applications of His6-tagged BsAmpII.


Assuntos
Aminopeptidases/química , Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Cromatografia em Gel , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Solventes , Espectrometria de Fluorescência , Ultracentrifugação , Ureia/química
7.
Molecules ; 19(4): 4997-5012, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24759067

RESUMO

In this study, we synthesized water-soluble hyperbranched poly(amido acid)s (HBPAAs) featuring multiple terminal CO2H units and internal tertiary amino and amido moieties and then used them in conjunction with an in situ Fe2+/Fe3+ co-precipitation process to prepare organic/magnetic nanocarriers comprising uniformly small magnetic iron oxide nanoparticles (NP) incorporated within the globular HBPAAs. Transmission electron microscopy revealed that the HBPAA-γ-Fe2O3 NPs had dimensions of 6-11 nm, significantly smaller than those of the pristine γ-Fe2O3 (20-30 nm). Subsequently, we covalently immobilized a bacterial γ-glutamyltranspeptidase (BlGGT) upon the HBPAA-γ-Fe2O3 nanocarriers through the formation of amide linkages in the presence of a coupling agent. Magnetization curves of the HBPAA-γ-Fe2O3/BlGGT composites measured at 300 K suggested superparamagnetic characteristics, with a saturation magnetization of 52 emu g⁻¹. The loading capacity of BlGGT on the HBPAA-γ-Fe2O3 nanocarriers was 16 mg g⁻¹ support; this sample provided a 48% recovery of the initial activity. The immobilized enzyme could be recycled 10 times with 32% retention of the initial activity; it had stability comparable with that of the free enzyme during a storage period of 63 days. The covalent immobilization and stability of the enzyme and the magnetization provided by the HBPAA-γ-Fe2O3 NPs suggests that this approach could be an economical means of depositing bioactive enzymes upon nanocarriers for BlGGT-mediated bio-catalysis.


Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Nylons/química , gama-Glutamiltransferase/química , Estabilidade Enzimática , Reutilização de Equipamento , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Proteínas Recombinantes/química , Temperatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-23722850

RESUMO

Here, the crystallization and preliminary X-ray diffraction studies of Bacillus licheniformis γ-glutamyl transpeptidase (BlGT) are reported. The serendipitous finding of heterogeneous nucleants in the initial experiments provided the first crystallization conditions for the protein. Crystals were grown by hanging-drop vapour diffusion using a precipitant solution consisting of 20%(w/v) PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M Tris-HCl pH 8.2. The protein crystallized in the orthorhombic space group P2(1)2(1)2(1), with one heterodimer per asymmetric unit and unit-cell parameters a = 60.90, b = 61.97, c = 148.24 Å. The BlGT crystals diffracted to 2.95 Å resolution.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , gama-Glutamiltransferase/química , Proteínas de Bactérias/isolamento & purificação , Cristalização , Difração de Raios X , gama-Glutamiltransferase/isolamento & purificação
9.
Int J Mol Sci ; 14(3): 4613-28, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23443161

RESUMO

This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT). Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES) to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

10.
J Ind Microbiol Biotechnol ; 39(12): 1779-88, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22886623

RESUMO

Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.


Assuntos
Bacillus/enzimologia , Temperatura Alta , Desnaturação Proteica/efeitos dos fármacos , Sorbitol/farmacologia , alfa-Amilases/metabolismo , Dicroísmo Circular , Estabilidade Enzimática/efeitos dos fármacos , Guanidina/antagonistas & inibidores , Guanidina/farmacologia , Metilaminas/farmacologia , Concentração Osmolar , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dodecilsulfato de Sódio/farmacologia , Espectrometria de Fluorescência , alfa-Amilases/química
11.
Eur Biophys J ; 40(10): 1131-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21874381

RESUMO

Aldehyde dehydrogenase (ALDH) catalyzes the conversion of aldehydes to the corresponding acids by means of an NAD(P)(+)-dependent virtually irreversible reaction. In this investigation, the biophysical properties of a recombinant Bacillus licheniformis ALDH (BlALDH) were characterized in detail by analytical ultracentrifuge (AUC) and various spectroscopic techniques. The oligomeric state of BlALDH in solution was determined to be tetrameric by AUC. Far-UV circular dichroism analysis revealed that the secondary structures of BlALDH were not altered in the presence of acetone and ethanol, whereas SDS had a detrimental effect on the folding of the enzyme. Thermal unfolding of this enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl](05, N-U), at 0.93 M. BlALDH was active at concentrations of urea below 2 M, but it experienced an irreversible unfolding under 8 M denaturant. Taken together, this study provides a foundation for the future structural investigation of BlALDH, a typical member of ALDH superfamily enzymes.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Bacillus/enzimologia , Fenômenos Biofísicos , Aldeído Desidrogenase/isolamento & purificação , Dicroísmo Circular , Guanidina/farmacologia , Multimerização Proteica , Estrutura Quaternária de Proteína/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Solventes/farmacologia , Espectrometria de Fluorescência , Temperatura , Triptofano , Ultracentrifugação , Ureia/farmacologia
12.
Biochemistry (Mosc) ; 76(11): 1233-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22117550

RESUMO

Based on the sequence homology, we have modeled the three-dimensional structure of Bacillus licheniformis aldehyde dehydrogenase (BlALDH) and identified two different residues, Glu255 and Cys289, that might be responsible for the catalytic function of the enzyme. The role of these residues was further investigated by site-directed mutagenesis and biophysical analysis. The expressed parental and mutant proteins were purified by nickel-chelate chromatography, and their molecular masses were determined to be approximately 53 kDa by SDS-PAGE. As compared with the parental BlALDH, a dramatic decrease or even complete loss of the dehydrogenase activity was observed for the mutant enzymes. Structural analysis showed that the intrinsic fluorescence and circular dichroism spectra of the mutant proteins were similar to the parental enzyme, but most of the variants exhibited a different sensitivity towards thermal- and guanidine hydrochloride-induced denaturation. These observations indicate that residues Glu255 and Cys289 play an important role in the dehydrogenase activity of BlALDH, and the rigidity of the enzyme has been changed as a consequence of the mutations.


Assuntos
Aldeído Desidrogenase/metabolismo , Bacillus/enzimologia , Cisteína/química , Glicina/metabolismo , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Catálise , Dicroísmo Circular , Cisteína/genética , Cisteína/metabolismo , Expressão Gênica , Glicina/química , Glicina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
J Biol Phys ; 37(4): 463-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22942488

RESUMO

Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT) undergoes an autocatalytic process to generate 44.9 and 21.7 kDa subunits; however, a mutant protein (T399A) loses completely the processing ability and mainly exists as a precursor. For a comprehensive understanding of their structural features, the biophysical properties of these two proteins were investigated by circular dichroism and fluorescence spectroscopy. Tryptophan fluorescence and circular dichroism spectra were nearly identical for BlGGT and T399A, but unfolding analyses revealed that these two proteins had a different sensitivity towards temperature- and guanidine hydrochloride (GdnHCl)-induced denaturation. BlGGT and the unprocessed T399A displayed T(m) values of 61.4°C and 68.1°C, respectively, and thermal unfolding of both proteins was found to be highly irreversible. Fluorescence quenching analysis showed that T399A had a dynamic quenching constant similar to that of the wild-type enzyme. BlGGT started to unfold beyond ∼2.14 M GdnHCl and reached an unfolded intermediate, [GdnHCl](0.5, N - U), at 2.85 M, corresponding to free energy change [Formula: see text] of 12.34 kcal mol( - 1), whereas the midpoint of the denaturation curve for T399A was approximately 3.94 M, corresponding to a [Formula: see text] of 4.45 kcal mol( - 1). Taken together, it can be concluded that the structural stability of BlGGT is superior to that of T399A.

14.
Biochemistry (Mosc) ; 75(5): 642-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20632945

RESUMO

The biophysical properties of Bacillus kaustophilus leucyl aminopeptidase (BkLAP) were examined in terms of analytical ultracentrifugation, fluorescence spectroscopy, and circular dichroism. By using the analytical ultracentrifuge, we demonstrated that tetrameric BkLAP exists as the major form in solution at protein concentration of 1.5 mg/ml at pH 8.0. The native enzyme started to unfold beyond ~1 M GdnHCl and reached an unfolded intermediate with [GdnHCl](1/2) at 1.8 M. Thermal unfolding of BkLAP was found to be highly irreversible and led to a marked formation of aggregates.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Leucil Aminopeptidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Guanidina/química , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Ultracentrifugação
15.
Biochemistry (Mosc) ; 75(7): 919-29, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20673217

RESUMO

The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta(576-585), pro-Delta(566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and DeltaG(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at ~4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional , Deleção de Sequência , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus/química , Bacillus/genética , Proteínas de Bactérias/genética , Catálise , Dimerização , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Alinhamento de Sequência , gama-Glutamiltransferase/genética
16.
J Ind Microbiol Biotechnol ; 37(7): 717-25, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20373125

RESUMO

This article reports the synthesis and use of surface-modified iron oxide particles for the simultaneous purification and immobilization of Bacillus stearothermophilus aminopeptidase II (BsAPII) tagged C-terminally with either tri- or nona-lysines (BsAPII-Lys(3/9)). The carboxylated magnetic particles were prepared by the simple co-precipitation of Fe(3+)/Fe(2+) in aqueous medium and then subsequently modified with adipic acid. Transmission electron microscopy (TEM) micrographs showed that the carboxylated magnetic particles remained discrete and had no significant change in size after binding BsAPIIs. Wild-type enzyme and BsAPII-Lys(3) could be purified to near homogeneity by the carboxylated magnetic particles, but it was not easy to elute the adsorbed BsAPII-Lys(9) from the matrix. Free BsAPII, BsAPII-Lys(3), and BsAPII-Lys(9) were active in the temperature range 50-70 degrees C and all had an optimum of 50 degrees C, whereas the optimum temperature and thermal stability of BsAPII-Lys(3) and BsAPII-Lys(9) were improved as a result of immobilization. The immobilized BsAPII-Lys(9) could be recycled ten times without a significant loss of the enzyme activity and had a better stability during storage than BsAPII. Owing to its high efficiency and cost-effectiveness, this magnetic adsorbent may be used as a novel purification-immobilization system for the positively charged enzymes.


Assuntos
Aminopeptidases/química , Proteínas de Bactérias/química , Óxido Ferroso-Férrico/química , Geobacillus stearothermophilus/enzimologia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Estrutura Terciária de Proteína , Temperatura
17.
Arch Microbiol ; 191(7): 583-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19455308

RESUMO

Bacillus licheniformis DnaK (BlDnaK) is predicted to consist of a 45-kDa N-terminal ATPase domain and a 25-kDa C-terminal substrate-binding domain. In this study, the full-length BlDnaK and its T86W and three C-terminally truncated mutants were constructed to evaluate the role of up to C-terminal 255 amino acids of the protein. The steady-state ATPase activity for BlDnaK, T86W, T86W/DeltaC120, T86W/DeltaC249, and T86W/DeltaC255 was 65.68, 53.21, 116.04, 321.38, and 90.59 nmol Pi/min per mg, respectively. In vivo, BldnaK, T86W and T86W/DeltaC120 genes allowed an E. coli dnaK756-ts mutant to grow at 44 degrees C. Except for T86W/DeltaC255, simultaneous addition of B. licheniformis DnaJ and GrpE, and NR-peptide synergistically stimulated the ATPase activity of BlDnaK, T86W, T86W/DeltaC120, and T86W/DeltaC249 by 16.9-, 13.9-, 33.9-, 9.9-fold, respectively. Measurement of intrinsic tryptophan fluorescence revealed significant alterations of microenvironment of aromatic amino acids in the C-terminally truncated mutants. The temperature-dependent signal in the far-UV region for T86W was consistent with that of BlDnaK, but the C-terminally truncated mutant proteins showed a higher sensitivity toward temperature-induced denaturation. These results suggest that C-terminal truncations alter the ATPase activity and thermal stability of BlDnaK and induce the conformation change of the ATPase domain.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus/genética , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Dicroísmo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Chaperonas Moleculares/genética , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência
18.
Curr Microbiol ; 59(2): 101-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19340483

RESUMO

Role of the conserved Thr399 and Thr417 residues of Bacillus licheniformis gamma-glutamyltranspeptidase (BlGGT) was investigated by site-directed mutagenesis. Substitutions of Thr399 and Thr417 of BlGGT with Ser resulted in a dramatic reduction in enzymatic activity. A complete loss of the GGT activity was observed in T399A, T399C, T417A, and T417K mutant enzymes. Furthermore, mutations on these two residues impaired the capability of autocatalytic processing of the enzyme. In vitro maturation experiments showed that BlGGT mutant precursors, pro-T399S, pro-T417S, and pro-T417A, could precede a time-dependent autocatalytic process to generate the 44.9- and 21.7-kDa subunits; however, the processed T417A had no enzymatic activity. Measurement of intrinsic tryptophan fluorescence revealed alteration of the microenvironment of aromatic amino acid residues, while Far-UV circular dichroism spectra were nearly identical for wild-type and mutant enzymes. These results suggest that residues Thr399 and Thr417 are important for BlGGT in the enzymatic maturation and reaction.


Assuntos
Substituição de Aminoácidos/genética , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Precursores de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
19.
Indian J Biochem Biophys ; 46(4): 281-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19788059

RESUMO

A serine residue Ser463, required for proper function of E. coli y-glutamyltranspeptidase (EcGGT) was identified by site-directed mutagenesis on the basis of sequence alignment of human, pig, rat, and three bacterial enzymes. Thr-, Asp-, and Lys-substituted variants were overexpressed in E. coli M15 cells and the recombinant proteins were purified to near homogeneity by nickel-chelate chromatography. With the exception of S463T, the other two variants completely lost GGT activity, implying the importance of this residue in EcGGT. Moreover, substitution of Ser463 with either Lys or Asp impaired the capability of autocatalytic processing of the precursor into alpha- and beta-subunit. Computer modeling showed that the critical bonding distance of Gln390 C-Thr391 OG1 was significantly increased in S463D and S463K, indicating that these distance changes might be responsible for the lack of enzyme maturation. Measurements of intrinsic tryptophan fluorescence revealed alteration of the microenvironment of aromatic amino acid residues in S463D and S463K, while circular dichroism (CD) spectra were nearly identical for wild-type and all mutant enzymes. The temperature-dependent signal in the far-UV region for S463T was consistent with that of wild-type enzyme, but S463D and S463K showed a different sensitivity towards temperature-induced denaturation. These results implied that a significant conformational change occurred as a result of Asp- and Lys-substitution.


Assuntos
Escherichia coli/enzimologia , Serina/química , gama-Glutamiltransferase/química , Sequência de Aminoácidos , Ácido Aspártico/química , Catálise , Dicroísmo Circular , Glutamina/química , Lisina/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência/métodos , Treonina/química , Triptofano/química , gama-Glutamiltransferase/genética
20.
Indian J Microbiol ; 49(2): 151-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23100764

RESUMO

The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V(max) of 32.5 nmol Pi/min and a K(M) of 439 µM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg(2+) and K(+) ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA