Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1329918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370139

RESUMO

Introduction: The impact of climate change on ambient temperatures threatens to worsen pediatric pneumonia-related outcomes considerably. This study examined the associations of temperature variation and extreme temperature with pediatric pneumonia-related events using a meta-analysis. Methods: We systematically searched PubMed, Medline, Embase, and Web of Science databases for relevant literature, and the quality of evidence was assessed. Fixed and random-effects meta-analyses were performed to calculate the pooled relative risks (RRs) of the associations with pneumonia-related events. Results: We observed that a 1°C temperature variation increased the RR of pneumonia events by 1.06-fold (95% confidence interval (CI): 1.03-1.10). A 1°C temperature variation increased the RR by 1.10-fold of the pediatric pneumonia hospital admissions (95% CI: 1.00-1.21) and 1.06-fold of the pediatric pneumonia emergency department visits (95% CI: 1.01-1.10). Extreme cold increased the RR by 1.25-fold of the pediatric pneumonia events (95% CI: 1.07-1.45). A 1°C temperature variation increased the RR of pneumonia events in children by 1.19-fold (95% CI: 1.08-1.32), girls by 1.03-fold (95% CI: 1.02-1.05), and in temperate climate zones by 1.07-fold (95% CI: 1.03-1.11). Moreover, an increase in extreme cold increased the RR of pneumonia events in children by 2.43-fold (95% CI: 1.72-3.43), girls by 1.96-fold (95% CI: 1.29-2.98) and in temperate climate zones by 2.76-fold (95% CI: 1.71-4.47). Conclusion: Our study demonstrated that pediatric pneumonia events are more prevalent among children, particularly girls, and individuals residing in temperate climate zones. Climate change represents an emergent public health threat, affecting pediatric pneumonia treatment and prevention.. Systematic Review Registration: PROSPERO (CRD42022378610).

2.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001490

RESUMO

Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.

3.
Biomedicines ; 12(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062020

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by excessive fat accumulation in the liver. Intracellular oxidative stress induced by lipid accumulation leads to various hepatocellular injuries including fibrosis. However, no effective method for mitigating MASLD without substantial side effects currently exists. Molecular hydrogen (H2) has garnered attention due to its efficiency in neutralizing harmful reactive oxygen species (ROS) and its ability to penetrate cell membranes. Some clinical evidence suggests that H2 may alleviate fatty liver disease, but the precise molecular mechanisms, particularly the regulation of lipid droplet (LD) metabolism, remain unclear. This study utilized an in vitro model of hepatocyte lipid accumulation induced by free fatty acids (FFAs) to replicate MASLD in HepG2 cells. The results demonstrated a significant increase in LD accumulation due to elevated FFA levels. However, the addition of hydrogen-rich water (HRW) effectively reduced LD accumulation. HRW decreased the diameter of LDs and reduced lipid peroxidation and FFA-induced oxidative stress by activating the AMPK/Nrf2/HO-1 pathway. Overall, our findings suggest that HRW has potential as an adjunctive supplement in managing fatty liver disease by reducing LD accumulation and enhancing antioxidant pathways, presenting a novel strategy for impeding MASLD progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA