Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Hyperthermia ; 38(1): 650-662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882773

RESUMO

BACKGROUND: Metastatic prostate cancer in bone is difficult to treat as the tumor cells are relatively resistant to hormonal or chemotherapies when compared to primary prostate cancer. Irreversible electroporation (IRE) is a minimally invasive ablation procedure that has potential applications in the management of prostate cancer in bone. However, a common limitation of IRE is tumor recurrence, which arises from incomplete ablation that allows remaining cancer cells to proliferate. In this study, we combined IRE with radium-223 (Ra-223), a bone-seeking radionuclide that emits short track length alpha particles and thus is associated with reduced damage to the bone marrow and evaluated the impact of the combination treatment on bone-forming prostate cancer tumors. METHODS: The antitumor activity of IRE and Ra-223 as single agents and in combination was tested in vitro against three bone morphogenetic protein 4 (BMP4)-expressing prostate cancer cell lines (C4-2B-BMP4, Myc-CaP-BMP4, and TRAMP-C2-BMP4). Similar evaluation was performed in vivo using a bone-forming C4-2B-BMP4 tumor model in nude mice. RESULTS: IRE and Ra-223 as monotherapy inhibited prostate cancer cell proliferation in vitro, and their combination resulted in significant reduction in cell viability compared to monotherapy. In vivo evaluation revealed that IRE with single-dose administration of Ra-233, compared to IRE alone, reduced the rate of tumor recurrence by 40% following initial apparent complete ablation and decreased the rate of proliferation of incompletely ablated tumor as quantified in Ki-67 staining (53.58 ± 16.0% for IRE vs. 20.12 ± 1.63%; for IRE plus Ra-223; p = 0.004). Histological analysis qualitatively showed the enhanced killing of tumor cells adjacent to bone by Ra-223 compared to those treated with IRE alone. CONCLUSION: IRE in combination with Ra-223, which enhanced the destruction of cancer cells that are adjacent to bone, resulted in reduction of tumor recurrence through improved clearance of proliferative cells in the tumor region.


Assuntos
Neoplasias da Próstata , Rádio (Elemento) , Animais , Eletroporação , Humanos , Masculino , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Neoplasias da Próstata/radioterapia , Rádio (Elemento)/uso terapêutico
2.
Curr Osteoporos Rep ; 16(6): 642-647, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203251

RESUMO

PURPOSE OF REVIEW: Prostate cancer bone metastasis is the lethal progression of the disease. The disease frequently presents with osteoblastic lesions in bone. The tumor-induced bone can cause complications that significantly hamper the quality of life of patients. A better understanding of how prostate cancer induces aberrant bone formation and how the aberrant bone affects the progression and treatment of the disease may improve the therapies for this disease. RECENT FINDINGS: Prostate cancer-induced bone was shown to enhance tumor growth and confer therapeutic resistance in bone metastasis. Clinically, Radium-223, an alpha emitter that selectively targets bone, was shown to improve overall survival in patients, supporting a role of tumor-induced bone in prostate cancer progression in bone. Recently, it was discovered that PCa-induced aberrant bone formation is due, in part, from tumor-associated endothelial cells that were converted into osteoblasts through endothelial-to-osteoblast (EC-to-OSB) conversion by tumor-secreted BMP4. The unique bone-forming phenotype of prostate cancer bone metastasis plays a role in prostate cancer progression in bone and therapy resistance. Therapies that incorporate targeting the tumor-induced osteoblasts or EC-to-OSB conversion mechanism may reduce tumor-induced bone formation and improve therapy outcomes.


Assuntos
Neoplasias Ósseas/secundário , Estadiamento de Neoplasias , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Neoplasias Ósseas/diagnóstico , Diferenciação Celular , Progressão da Doença , Humanos , Masculino , Metástase Neoplásica
3.
J Proteome Res ; 16(8): 2709-2728, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28675788

RESUMO

Osteoblasts communicate both with normal cells in the bone marrow and with tumor cells that metastasized to bone. Here we show that osteoblasts release exosomes, we termed osteosomes, which may be a novel mechanism by which osteoblasts communicate with cells in their environment. We have isolated exosomes from undifferentiated/proliferating (D0 osteosomes) and differentiated/mineralizing (D24 osteosomes) primary mouse calvarial osteoblasts. The D0 and D24 osteosomes were found to be vesicles of 130-140 nm by dynamic light scattering analysis. Proteomics profiling using tandem mass spectrometry (LC-MS/MS) identified 206 proteins in D0 osteosomes and 336 in D24 osteosomes. The proteins in osteosomes are mainly derived from the cytoplasm (∼47%) and plasma membrane (∼31%). About 69% of proteins in osteosomes are also found in Vesiclepedia, and these canonical exosomal proteins include tetraspanins and Rab family proteins. We found that there are differences in both protein content and levels in exosomes isolated from undifferentiated and differentiated osteoblasts. Among the proteins that are unique to osteosomes, 169 proteins are present in both D0 and D24 osteosomes, 37 are unique to D0, and 167 are unique to D24. Among those 169 proteins present in both D0 and D24 osteosomes, 10 proteins are likely present at higher levels in D24 than D0 osteosomes based on emPAI ratios of >5. These results suggest that osteosomes released from different cellular state of osteoblasts may mediate distinct functions. Using live-cell imaging, we measured the uptake of PKH26-labeled osteosomes into C4-2B4 and PC3-mm2 prostate cancer cells. In addition, we showed that cadherin-11, a cell adhesion molecule, plays a role in the uptake of osteosomes into PC3-mm2 cells as osteosome uptake was delayed by neutralizing antibody against cadherin-11. Together, our studies suggest that osteosomes could have a unique role in the bone microenvironment under both physiological and pathological conditions.


Assuntos
Calcificação Fisiológica , Proliferação de Células , Exossomos/química , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Proteínas/análise , Animais , Caderinas/fisiologia , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Microambiente Celular/fisiologia , Exossomos/patologia , Humanos , Masculino , Camundongos , Osteoblastos/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica/métodos
4.
FASEB J ; 29(3): 1080-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25466890

RESUMO

Loss of E-cadherin and up-regulation of mesenchymal cadherins, a hallmark of the epithelial-mesenchymal transition, contributes to migration and dissemination of cancer cells. Expression of human cadherin-11 (Cad11), also known as osteoblast cadherin, in prostate cancer increases the migration of prostate cancer cells. How Cad11 mediates cell migration is unknown. Using the human Cad11 cytoplasmic domain in pulldown assays, we identified human angiomotin (Amot), known to be involved in cell polarity, migration, and Hippo pathway, as a component of the Cad11 protein complex. Deletion analysis showed that the last C-terminal 10 amino acids in Cad11 cytoplasmic domain are required for Amot binding. Further, Cad11 preferentially interacts with Amot-p80 than Amot-p130 isoform and binds directly to the middle domain of Amot-p80. Cad11-Amot interaction affects Cad11-mediated cell migration, but not homophilic adhesion, as deletion of Amot binding motif of Cad11 (Cad11-ΔAmot) did not abolish Cad11-mediated cell-cell adhesion of mouse L cells, but significantly reduced Cad11-mediated cell migration of human C4-2B4 and PC3-mm2 prostate cancer cells and human HEK293T cells. Together, our studies identified Amot-p80 as a novel component of the Cad11 complex and demonstrated that Amot-p80 is critical for Cad11-mediated cell migration.


Assuntos
Caderinas/metabolismo , Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/patologia , beta Catenina/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Sequência de Aminoácidos , Angiomotinas , Animais , Western Blotting , Caderinas/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Imunofluorescência , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , beta Catenina/genética , Proteína p120 Ativadora de GTPase/genética
5.
J Am Soc Nephrol ; 24(10): 1644-59, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23833260

RESUMO

Bone marrow-derived fibroblasts may contribute substantially to the pathogenesis of renal fibrosis through the excessive production and deposition of extracellular matrix. However, the mechanisms underlying the accumulation and activation of these fibroblasts are not understood. Here, we used a mouse model of tubulointerstitial fibrosis to determine whether adiponectin, which is elevated in CKD and is associated with disease progression, regulates monocyte-to-fibroblast transition and fibroblast activation in injured kidneys. In wild-type mice, the expression of adiponectin and the number of bone marrow-derived fibroblasts in the kidney increased after renal obstruction. In contrast, the obstructed kidneys of adiponectin-knockout mice had fewer bone marrow-derived fibroblasts. Adiponectin deficiency also led to a reduction in the number of myofibroblasts, the expression of profibrotic chemokines and cytokines, and the number of procollagen-expressing M2 macrophages in injured kidneys. Consistent with these findings, adiponectin-deficiency reduced the expression of collagen I and fibronectin. Similar results were observed in wild-type and adiponectin-knockout mice after ischemia-reperfusion injury. In cultured bone marrow-derived monocytes, adiponectin stimulated the expression of α-smooth muscle actin (SMA) and extracellular matrix proteins and activated AMP-activated protein kinase (AMPK) in a time- and dose-dependent manner. Furthermore, specific activation of AMPK increased the expression of α-SMA and extracellular matrix proteins, while inhibition of AMPK attenuated these responses. Taken together, these findings identify adiponectin as a critical regulator of monocyte-to-fibroblast transition and renal fibrosis, suggesting that inhibition of adiponectin/AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.


Assuntos
Adiponectina/metabolismo , Fibroblastos/patologia , Rim/patologia , Monócitos/fisiologia , Nefroesclerose/etiologia , Nefroesclerose/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Citocinas/metabolismo , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefroesclerose/metabolismo , Traumatismo por Reperfusão/patologia , Células Th2/metabolismo , Obstrução Ureteral/patologia
6.
Proc Natl Acad Sci U S A ; 107(20): 9234-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439714

RESUMO

Retinoic acid (RA) has several established functions during cardiac development, including actions in the fetal epicardium required for myocardial growth. An open question is if retinoid effects are limited to growth factor stimulation pathway(s) or if additional actions on uncommitted progenitor/stem populations might drive cardiac differentiation. Here we report the dual effects of RA deficiency on cardiac growth factor signaling and progenitor/stem biology using the mouse retinaldehyde dehydrogenase 2 (Raldh2) knockout model. Although early heart defects in Raldh2(-/-) embryos result from second-heart-field abnormalities, it is unclear whether this role is transient or whether RA has sustained effects on cardiac progenitors. To address this, we used transient maternal RA supplementation to overcome early Raldh2(-/-) lethality. By embryonic day 11.5-14.5, Raldh2(-/-) hearts exhibited reduced venticular compact layer outgrowth and altered coronary vessel development. Although reductions in Fgf2 and target pERK levels occurred, no alterations in Wnt/beta-catenin expression were observed. Cell proliferation is increased in compact zone myocardium, whereas cardiomyocyte differentiation is reduced, alterations that suggest progenitor defects. We report that the fetal heart contains a reservoir of stem/progenitor cells, which can be isolated by their ability to efflux a fluorescent dye and that retinoid signaling acts on this fetal cardiac side population (SP). Raldh2(-/-) hearts display increased SP cell numbers, with selective increases in expression of cardiac progenitor cell markers and reduced differentiation marker levels. Hence, although lack of RA signaling increases cardiac SP numbers, simultaneous reductions in Fgf signaling reduce cardiomyocyte differentiation, possibly accounting for long-term defects in myocardial growth.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Coração/embriologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Tretinoína/farmacologia , Aldeído Oxirredutases/genética , Animais , Diferenciação Celular/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
iScience ; 26(2): 105994, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36798441

RESUMO

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow- and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs.

8.
bioRxiv ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076845

RESUMO

Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance: The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.

9.
J Am Soc Nephrol ; 22(10): 1876-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21816936

RESUMO

Although fibroblasts are responsible for the production and deposition of extracellular matrix in renal fibrosis, their origin is controversial. Circulating fibroblast precursors may contribute to the pathogenesis of renal fibrosis, but the signaling mechanisms underlying the recruitment of bone marrow-derived fibroblast precursors into the kidney in response to injury are incompletely understood. Here, in the unilateral ureteral obstruction model of renal fibrosis, tubular epithelial cells upregulated the chemokine CXCL16 in obstructed kidneys, and circulating fibroblast precursors expressed the CXCL16 receptor, CXCR6. Compared with wild-type mice, CXCL16-knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors in obstructed kidneys. CXCL16-knockout mice also exhibited significantly fewer CD45-, collagen I-, and CXCR6-triple-positive fibroblast precursors in injured kidneys. Furthermore, targeted deletion of CXCL16 inhibited myofibroblast activation, reduced collagen deposition, and suppressed expression of collagen I and fibronectin. In conclusion, CXCL16 contributes to the pathogenesis of renal fibrosis by recruiting bone marrow-derived fibroblast precursors.


Assuntos
Células da Medula Óssea/fisiologia , Quimiocina CXCL6/metabolismo , Fibroblastos/fisiologia , Nefroesclerose/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Quimiocina CXCL16 , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miofibroblastos/citologia , Nefroesclerose/etiologia , Receptores CXCR/metabolismo , Receptores CXCR6 , Obstrução Ureteral
10.
Cancer Res ; 82(17): 3158-3171, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802768

RESUMO

Metastatic prostate cancer in the bone induces bone-forming lesions that contribute to progression and therapy resistance. Prostate cancer-induced bone formation originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition in response to tumor-secreted BMP4. Current strategies targeting prostate cancer-induced bone formation are lacking. Here, we show that activation of retinoic acid receptor (RAR) inhibits EC-to-OSB transition and reduces prostate cancer-induced bone formation. Treatment with palovarotene, an RARγ agonist being tested for heterotopic ossification in fibrodysplasia ossificans progressiva, inhibited EC-to-OSB transition and osteoblast mineralization in vitro and decreased tumor-induced bone formation and tumor growth in several osteogenic prostate cancer models, and similar effects were observed with the pan-RAR agonist all-trans-retinoic acid (ATRA). Knockdown of RARα, ß, or γ isoforms in ECs blocked BMP4-induced EC-to-OSB transition and osteoblast mineralization, indicating a role for all three isoforms in prostate cancer-induced bone formation. Furthermore, treatment with palovarotene or ATRA reduced plasma Tenascin C, a factor secreted from EC-OSB cells, which may be used to monitor treatment response. Mechanistically, BMP4-activated pSmad1 formed a complex with RAR in the nucleus of ECs to activate EC-to-OSB transition. RAR activation by palovarotene or ATRA caused pSmad1 degradation by recruiting the E3-ubiquitin ligase Smad ubiquitination regulatory factor1 (Smurf1) to the nuclear pSmad1/RARγ complex, thus blocking EC-to-OSB transition. Collectively, these findings suggest that palovarotene can be repurposed to target prostate cancer-induced bone formation to improve clinical outcomes for patients with bone metastasis. SIGNIFICANCE: This study provides mechanistic insights into how RAR agonists suppress prostate cancer-induced bone formation and offers a rationale for developing RAR agonists for prostate cancer bone metastasis therapy. See related commentary by Bhowmick and Bhowmick, p. 2975.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/metabolismo , Células Endoteliais/patologia , Humanos , Masculino , Osteoblastos/metabolismo , Neoplasias da Próstata/patologia , Receptores do Ácido Retinoico/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
11.
Oncogene ; 41(6): 757-769, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845375

RESUMO

Metastatic prostate cancer (PCa) in bone induces bone-forming lesions that enhance PCa progression. How tumor-induced bone formation enhances PCa progression is not known. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition by tumor-secreted bone morphogenetic protein 4 (BMP4). Here, we show that EC-to-OSB transition leads to changes in the tumor microenvironment that increases the metastatic potential of PCa cells. We found that conditioned medium (CM) from EC-OSB hybrid cells increases the migration, invasion, and survival of PC3-mm2 and C4-2B4 PCa cells. Quantitative mass spectrometry (Isobaric Tags for Relative and Absolute Quantitation) identified Tenascin C (TNC) as one of the major proteins secreted from EC-OSB hybrid cells. TNC expression in tumor-induced OSBs was confirmed by immunohistochemistry of MDA PCa-118b xenograft and human bone metastasis specimens. Mechanistically, BMP4 increases TNC expression in EC-OSB cells through the Smad1-Notch/Hey1 pathway. How TNC promotes PCa metastasis was next interrogated by in vitro and in vivo studies. In vitro studies showed that a TNC-neutralizing antibody inhibits EC-OSB-CM-mediated PCa cell migration and survival. TNC knockdown decreased, while the addition of recombinant TNC or TNC overexpression increased migration and anchorage-independent growth of PC3 or C4-2b cells. When injected orthotopically, PC3-mm2-shTNC clones decreased metastasis to bone, while C4-2b-TNC-overexpressing cells increased metastasis to lymph nodes. TNC enhances PCa cell migration through α5ß1 integrin-mediated YAP/TAZ inhibition. These studies elucidate that tumor-induced stromal reprogramming generates TNC that enhances PCa metastasis and suggest that TNC may be a target for PCa therapy.


Assuntos
Tenascina
12.
Am J Physiol Heart Circ Physiol ; 301(2): H538-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21572015

RESUMO

Angiotensin II plays an important role in the development of cardiac hypertrophy and fibrosis, but the underlying cellular and molecular mechanisms are not completely understood. Recent studies have shown that bone marrow-derived fibroblast precursors are involved in the pathogenesis of cardiac fibrosis. Since bone marrow-derived fibroblast precursors express chemokine receptor, CCR2, we tested the hypothesis that CCR2 mediates the recruitment of fibroblast precursors into the heart, causing angiotensin II-induced cardiac fibrosis. Wild-type and CCR2 knockout mice were infused with angiotensin II at 1,500 ng·kg(-1)·min(-1). Angiotensin II treatment resulted in elevated blood pressure and cardiac hypertrophy that were not significantly different between wild-type and CCR2 knockout mice. Angiotensin II treatment of wild-type mice caused prominent cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors expressing the hematopoietic markers, CD34 and CD45, and the mesenchymal marker, collagen I. However, angiotensin II-induced cardiac fibrosis and accumulation of bone marrow-derived fibroblast precursors in the heart were abrogated in CCR2 knockout mice. Furthermore, angiotensin II treatment of wild-type mice increased the levels of collagen I, fibronectin, and α-smooth muscle actin in the heart, whereas these changes were not observed in the heart of angiotensin II-treated CCR2 knockout mice. Functional studies revealed that the reduction of cardiac fibrosis led to an impairment of cardiac systolic function and left ventricular dilatation in angiotensin II-treated CCR2 knockout mice. Our data demonstrate that CCR2 plays a pivotal role in the pathogenesis of angiotensin II-induced cardiac fibrosis through regulation of bone marrow-derived fibroblast precursors.


Assuntos
Angiotensina II , Células da Medula Óssea/metabolismo , Movimento Celular , Fibroblastos/metabolismo , Cardiopatias/prevenção & controle , Miocárdio/metabolismo , Receptores CCR2/metabolismo , Células-Tronco/metabolismo , Análise de Variância , Animais , Biomarcadores/metabolismo , Pressão Sanguínea , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/diagnóstico por imagem , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Frequência Cardíaca , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Receptores CCR2/deficiência , Receptores CCR2/genética , Volume Sistólico , Fatores de Tempo , Ultrassonografia , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular
13.
Proc Natl Acad Sci U S A ; 105(8): 2913-8, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287057

RESUMO

Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2(-/-) knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2(-/-) embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2(-/-) embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2(-/-) mutant heart, in a gene dosage-dependent manner.


Assuntos
Aldeído Oxirredutases/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/embriologia , Tretinoína/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Dosagem de Genes , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
14.
Oncogene ; 40(27): 4592-4603, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127814

RESUMO

A fraction of patients undergoing androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) will develop recurrent castrate-resistant PCa (CRPC) in bone. Strategies to prevent CRPC relapse in bone are lacking. Here we show that the cholesterol-lowering drugs statins decrease castration-induced bone marrow adiposity in the tumor microenvironment and reduce PCa progression in bone. Using primary bone marrow stromal cells (BMSC) and M2-10B4 cells, we showed that ADT increases bone marrow adiposity by enhancing BMSC-to-adipocyte transition in vitro. Knockdown of androgen receptor abrogated BMSC-to-adipocyte transition, suggesting an androgen receptor-dependent event. RNAseq analysis showed that androgens reduce the secretion of adipocyte hormones/cytokines including leptin during BMSC-to-adipocyte transition. Treatment of PCa C4-2b, C4-2B4, and PC3 cells with leptin led to an increase in cell cycle progression and nuclear Stat3. RNAseq analysis also showed that androgens inhibit cholesterol biosynthesis pathway, raising the possibility that inhibiting cholesterol biosynthesis may decrease BMSC-to-adipocyte transition. Indeed, statins decreased BMSC-to-adipocyte transition in vitro and castration-induced bone marrow adiposity in vivo. Statin pre-treatment reduced 22RV1 PCa progression in bone after ADT. Our findings with statin may provide one of the mechanisms to the clinical correlations that statin use in patients undergoing ADT seems to delay progression to "lethal" PCa.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Adiposidade , Humanos , Masculino , Neoplasias da Próstata
15.
iScience ; 24(4): 102388, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33981975

RESUMO

Cell type transition occurs during normal development and under pathological conditions. In prostate cancer bone metastasis, prostate cancer-secreted BMP4 induces endothelial cell-to-osteoblast (EC-to-OSB) transition. Such tumor-induced stromal reprogramming supports prostate cancer progression. We delineate signaling pathways mediating EC-to-OSB transition using EC lines 2H11 and SVR. We found that BMP4-activated pSmad1-Notch-Hey1 pathway inhibits EC migration and tube formation. BMP4-activated GSK3ß-ßcatenin-Slug pathway stimulates Osx expression. In addition, pSmad1-regulated Dlx2 converges with the Smad1 and ß-catenin pathways to stimulate osteocalcin expression. By co-expressing Osx, Dlx2, Slug and Hey1, we were able to achieve EC-to-OSB transition, leading to bone matrix mineralization in the absence of BMP4. In human prostate cancer bone metastasis specimens and MDA-PCa-118b and C4-2b-BMP4 osteogenic xenografts, immunohistochemical analysis showed that ß-catenin and pSmad1 are detected in activated osteoblasts rimming the tumor-induced bone. Our results elucidated the pathways and key molecules coordinating prostate cancer-induced stromal programming and provide potential targets for therapeutic intervention.

16.
Clin Cancer Res ; 27(11): 3253-3264, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753455

RESUMO

PURPOSE: Radium-223 prolongs survival in a fraction of men with bone metastatic prostate cancer (PCa). However, there are no markers for monitoring response and resistance to Radium-223 treatment. Exosomes are mediators of intercellular communication and may reflect response of the bone microenvironment to Radium-223 treatment. We performed molecular profiling of exosomes and compared the molecular profile in patients with favorable and unfavorable overall survival. EXPERIMENTAL DESIGN: We performed exosomal transcriptome analysis in plasma derived from our preclinical models (MDA-PCa 118b tumors, TRAMP-C2/BMP4 PCa) and from the plasma of 25 patients (paired baseline and end of treatment) treated with Radium-223. All samples were run in duplicate, and array data analyzed with fold changes +2 to -2 and P < 0.05. RESULTS: We utilized the preclinical models to establish that genes derived from the tumor and the tumor-associated bone microenvironment (bTME) are differentially enriched in plasma exosomes upon Radium-223 treatment. The mouse transcriptome analysis revealed changes in bone-related and DNA damage repair-related pathways. Similar findings were observed in plasma-derived exosomes from patients treated with Radium-223 detected changes. In addition, exosomal transcripts detected immune-suppressors (e.g., PD-L1) that were associated with shorter survival to Radium-223. Treatment of the Myc-CaP mouse model with a combination of Radium-223 and immune checkpoint therapy (ICT) resulted in greater efficacy than monotherapy. CONCLUSIONS: These clinical and coclinical analyses showed that RNA profiling of plasma exosomes may be used for monitoring the bTME in response to treatment and that ICT may be used to increase the efficacy of Radium-223.


Assuntos
Neoplasias Ósseas/secundário , Vesículas Extracelulares/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Rádio (Elemento)/farmacologia , Rádio (Elemento)/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Animais , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Exossomos/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias da Próstata/mortalidade , RNA/genética , Taxa de Sobrevida
17.
Mol Cancer Ther ; 19(6): 1266-1278, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220969

RESUMO

Renal cell carcinoma bone metastases (RCCBM) are typically osteolytic. We previously showed that BIGH3 (beta Ig-h3/TGFBI), secreted by 786-O renal cell carcinoma, plays a role in osteolytic bone lesion in RCCBM through inhibition of osteoblast (OSB) differentiation. To study this interaction, we employed three-dimensional (3D) hydrogels to coculture bone-derived 786-O (Bo-786) renal cell carcinoma cells with MC3T3-E1 pre-OSBs. Culturing pre-OSBs in the 3D hydrogels preserved their ability to differentiate into mature OSB; however, this process was decreased when pre-OSBs were cocultured with Bo-786 cells. Knockdown of BIGH3 in Bo-786 cells recovered OSB differentiation. Furthermore, treatment with bone morphogenetic protein 4, which stimulates OSB differentiation, or cabozantinib (CBZ), which inhibits VEGFR1 and MET tyrosine kinase activities, also increased OSB differentiation in the coculture. CBZ also inhibited pre-osteoclast RAW264.7 cell differentiation. Using RCCBM mouse models, we showed that CBZ inhibited Bo-786 tumor growth in bone. CBZ treatment also increased bone volume and OSB number, and decreased osteoclast number and blood vessel density. When tested in SN12PM6 renal cell carcinoma cells that have been transduced to overexpress BIGH3, CBZ also inhibited SN12PM6 tumor growth in bone. These observations suggest that enhancing OSB differentiation could be one of the therapeutic strategies for treating RCCBM that exhibit OSB inhibition characteristics, and that this 3D coculture system is an effective tool for screening osteoanabolic agents for further in vivo studies.


Assuntos
Anilidas/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Carcinoma de Células Renais/tratamento farmacológico , Diferenciação Celular , Neoplasias Renais/tratamento farmacológico , Osteoblastos/citologia , Osteólise/tratamento farmacológico , Piridinas/farmacologia , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células , Técnicas de Cocultura , Humanos , Técnicas In Vitro , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos SCID , Osteoblastos/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 9(1): 18635, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819067

RESUMO

Disseminated tumor cells (DTCs) undergo a dormant state in the distant metastatic site(s) before becoming overt metastatic diseases. In prostate cancer (PCa), bone metastasis can occur years after prostatectomy, suggesting that bone may provide dormancy-inducing factors. To search for these factors, we prepared conditioned media (CM) from calvariae. Using live-cell imaging, we found that Calvarial-CM treatment increased cellular quiescence in C4-2B4 PCa cells. Mass spectrometry analysis of Calvarial-CM identified 132 secreted factors. Western blot and ELISA analyses confirmed the presence of several factors, including DKK3, BMP1, neogenin and vasorin in the Calvarial-CM. qRT-PCR analysis of total calvariae versus isolated osteoblasts showed that DKK3, BMP1, vasorin and neogenin are mainly expressed by osteoblasts, while MIA, LECT1, NGAL and PEDF are expressed by other calvarial cells. Recombinant human DKK3, BMP1, vasorin, neogenin, MIA and NGAL treatment increased cellular quiescence in both C4-2b and C4-2B4 PCa cells. Mechanistically, DKK3, vasorin and neogenin, but not BMP1, increased dormancy through activating the p38MAPK signaling pathway. Consistently, DKK3, vasorin and neogenin failed to induce dormancy in cells expressing dominant-negative p38αMAPK while BMP1 remained active, suggesting that BMP1 uses an alternative dormancy signaling pathway. Thus, bone secretes multiple dormancy-inducing factors that employ distinct signaling pathways to induce DTC dormancy in bone.


Assuntos
Proteína Morfogenética Óssea 1/genética , Neoplasias Ósseas/genética , Meios de Cultivo Condicionados/farmacologia , Neoplasias da Próstata/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Proteínas de Membrana/genética , Metástase Neoplásica , Osteoblastos/metabolismo , Osteoblastos/patologia , Próstata/metabolismo , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Crânio/metabolismo , Crânio/patologia
19.
Nat Cell Biol ; 21(5): 627-639, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988423

RESUMO

How disseminated tumour cells engage specific stromal components in distant organs for survival and outgrowth is a critical but poorly understood step of the metastatic cascade. Previous studies have demonstrated the importance of the epithelial-mesenchymal transition in promoting the cancer stem cell properties needed for metastasis initiation, whereas the reverse process of mesenchymal-epithelial transition is required for metastatic outgrowth. Here we report that this paradoxical requirement for the simultaneous induction of both mesenchymal-epithelial transition and cancer stem cell traits in disseminated tumour cells is provided by bone vascular niche E-selectin, whose direct binding to cancer cells promotes bone metastasis by inducing mesenchymal-epithelial transition and activating Wnt signalling. E-selectin binding activity mediated by the α1-3 fucosyltransferases Fut3/Fut6 and Glg1 are instrumental to the formation of bone metastasis. These findings provide unique insights into the functional role of E-selectin as a component of the vascular niche critical for metastatic colonization in bone.


Assuntos
Neoplasias Ósseas/genética , Selectina E/genética , Fucosiltransferases/genética , Metástase Neoplásica/genética , Neoplasias/genética , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Metástase Neoplásica/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Sialoglicoproteínas/genética , Transdução de Sinais/genética , Nicho de Células-Tronco/genética , Ativação Transcricional/genética , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 78(10): 2490-2502, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29535221

RESUMO

Although emerging evidence suggests a potential role of calcium/calmodulin-dependent kinase II (CaMKII) in prostate cancer, its role in prostate cancer tumorigenesis is largely unknown. Here, we examine whether the acetyl CoA-CaMKII pathway, first described in frog oocytes, promotes prostate cancer tumorigenesis. In human prostate cancer specimens, metastatic prostate cancer expressed higher levels of active CaMKII compared with localized prostate cancer. Correspondingly, basal CaMKII activity was significantly higher in the more tumorigenic PC3 and PC3-mm2 cells relative to the less tumorigenic LNCaP and C4-2B4 cells. Deletion of CaMKII by CRISPR/Cas9 in PC3-mm2 cells abrogated cell survival under low-serum conditions, anchorage-independent growth and cell migration; overexpression of constitutively active CaMKII in C4-2B4 cells promoted these phenotypes. In an animal model of prostate cancer metastasis, genetic ablation of CaMKII reduced PC3-mm2 cell metastasis from the prostate to the lymph nodes. Knockdown of the acetyl-CoA transporter carnitine acetyltransferase abolished CaMKII activation, providing evidence that acetyl-CoA generated from organelles is a major activator of CaMKII. Genetic deletion of the ß-oxidation rate-limiting enzyme ACOX family proteins decreased CaMKII activation, whereas overexpression of ACOXI increased CaMKII activation. Overall, our studies identify active CaMKII as a novel connection between organelle ß-oxidation and acetyl-CoA transport with cell survival, migration, and prostate cancer metastasis.Significance: This study identifies a cell metabolic pathway that promotes prostate cancer metastasis and suggests prostate cancer may be susceptible to ß-oxidation inhibitors. Cancer Res; 78(10); 2490-502. ©2018 AACR.


Assuntos
Acetilcoenzima A/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Carcinogênese/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Neoplasias da Próstata/patologia , Acil-CoA Oxidase/genética , Animais , Sistemas CRISPR-Cas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Carnitina O-Acetiltransferase/genética , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos SCID , Oxirredução , Oxirredutases/genética , Células PC-3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA