Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625729

RESUMO

Automation and efficiency requirements of environmental monitoring are the pursuit of spontaneous sampling and ultrasensitivity for current sensory systems or detection apparatuses. In this work, inspired by cactus hierarchical structures, we develop a cactus-inspired photonic crystal chip to integrate spontaneous droplet sampling and fluorescence enhancement for sensitive multi-analyte detection. A conical hydrophilic pattern on hydrophobic surfaces can give rise to unidirectional Laplace pressure, which drives droplet transport to the assigned photonic crystal site. The nanostructure of photonic crystals has bigger capillarity to drive the droplet wetting uniformly into the photonic crystal matrix while performing prominent fluorescence enhancement by their photonic bandgap. A low to attomolar (2.24 × 10-19 M) fluorescence limit of detection (LOD) sensitivity can be achieved by the synergy of spontaneous droplet sampling and fluorescence enhancement. Focused on eutrophic water problems and algae pollution monitoring, a femtomolar (1.83 × 10-15 M) LOD and identification of various microcystins in urban environmental water can be achieved. The suitable integration of the unidirectional droplet transport by Laplace pressure and fluorescence enhancement by photonic crystals can achieve the spontaneous sampling and signal enhancement for ultratrace detections and sample survey of environmental monitoring and disease diagnosis.

2.
Anal Chem ; 95(23): 9116-9122, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37264966

RESUMO

Electrochemiluminescence (ECL) has numerous merits such as high sensitivity and specificity for the detection applications on pharmacy, food safety, immunoassay, disease diagnosis, environmental monitoring, nucleic acid assay, and clinical treatment. However, the insufficiency of ECL luminescent reagents is restricting their adoption on complex systems or multi-analyte detections. In this work, to improve the selectivity and discrimination of ECL detection with one or less luminescent reagent, we employed multi-stopband photonic crystals (PCs) to enhance assigned ECL. The discrimination of ECL was well investigated to establish the quantitative description with PC stopbands. The multi-stopband PC electrode can facilely achieve 10 antibiotics qualitative and quantitative analysis with 100% accuracy and 0.44 µM LOD in PBS buffer and human serum. The selectivity of ECL detection for multi-analytes can be improved via designed PC luminescence amplifications. The exploration on PC selectivity for ECL enhancement will promote the realistic application of the ECL technique and contribute to the facile and efficient optical platform for clinical or health monitoring.


Assuntos
Medições Luminescentes , Fotometria , Humanos , Medições Luminescentes/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA