RESUMO
The skins of frogs of the family Ranidae are particularly rich sources of biologically active peptides, among which antimicrobial peptides (AMPs) constitute the major portion. Some of these have attracted the interest of researchers because they possess both antimicrobial and anticancer activities. In this study, with 'shotgun' cloning and MS/MS fragmentation, three AMPs, homologues of family brevinin-1 (brevinin-1HL), and temporin (temporin-HLa and temporin-HLb), were discovered from the skin secretion of the broad-folded frog, Hylarana latouchii. They exhibited various degrees of antimicrobial and antibiofilm activities against test microorganisms and hemolysis on horse erythrocytes. It was found that they could induce bacteria death through disrupting cell membranes and binding to bacterial DNA. In addition, they also showed different potencies towards human cancer cell lines. The secondary structure and physicochemical properties of each peptide were investigated to preliminarily reveal their structure-activity relationships. Circular dichroism spectrometry showed that they all adopted a canonical α-helical conformation in membrane-mimetic solvents. Notably, the prepropeptide of brevinin-1HL from H. latouchii was highly identical to that of brevinin-1GHd from Hylarana guentheri, indicating a close relationship between these two species. Accordingly, this study provides candidates for the design of novel anti-infective and antineoplastic agents to fight multidrug-resistant bacteria and malignant tumors and also offers additional clues for the taxonomy of ranid frogs.
Assuntos
Proteínas de Anfíbios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , DNA Bacteriano/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Proteínas de Anfíbios/isolamento & purificação , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/isolamento & purificação , Peptídeos Antimicrobianos/metabolismo , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Chromobacterium/efeitos dos fármacos , Chromobacterium/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Cavalos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ranidae/fisiologia , Pele/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimentoRESUMO
The deep eutectic solvent (DES) has emerged in recent years as a valuable medium for converting CO2 into valuable chemicals because of its easy availability, stability, and safety, and its capability to dissolve carbon dioxide. CO2 valorization in DES has evolved rapidly over the past 20â years. As well as being used as solvents for acid/base-promoted CO2 conversion for the production of cyclic carbonates and carbamates, DESs can be used as reaction media for electrochemical CO2 reduction for formic acid and CO. Among these products, cyclic carbonates can be used as solvents and electrolytes, carbamate derivatives include the core structure of many herbicides and pesticides, and formic acid and carbon monoxide, the C1 electrochemical products, are essential raw materials in the chemical industries. An overview of the application of DESs for CO2 valorization in recent years is presented in this review, followed by a compilation and comparison of product types and reaction mechanisms within the different types of DESs, and an outlook on how CO2 valorization will be developed in the future.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY: This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS: Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS: It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS: This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Assuntos
Mel , Plantas Medicinais , Scrophularia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Mel/análise , Peróxido de Hidrogênio/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Plantas Medicinais/química , Pseudomonas aeruginosa , Scrophularia/química , Staphylococcus aureus , Espectrometria de Massas em TandemRESUMO
In recent years, population aging together with the increased prevalence of diabetes and obesity has fuelled a surge in the instances of cutaneous non-healing wounds. Royal jelly (RJ) is a traditional remedy for wound repair; however, the subjacent mechanisms and ingredient profiles are still largely unknown. Our previous study found that Castanea mollissima Bl. RJ (CmRJ-Zj) possessed superior wound healing-promoting effects on both the in vivo and in vitro models than Brassica napus L. RJ (BnRJ-Zj). This study conducted an in-depth investigation on the wound-repairing mechanisms of CmRJ-Zj and BnRJ-Zj to explain the previously observed phenomenon and also comprehensively characterized their constituents. It was found that chestnut RJ could enhance cutaneous wound healing by boosting the growth and mobility of keratinocytes, modulating the expression of aquaporin 3 (AQP3), regulating MAPK and calcium pathways, and mediating inflammatory responses. By employing LC-MS/MS-based proteomic and metabolomic techniques, the comprehensive molecules present in CmRJ-Zj and BnRJ-Zj were elucidated, resulting in a clear discrimination from each other. A total of 15 and 631 differential proteins and compounds were identified, and 217 proteins were newly found in RJ proteome. With bioinformatic functional analysis, we speculated that some differential components were responsible for the wound-healing properties of CmRJ-Zj. Therefore, this study provides an insight into the wound-healing mechanisms of RJ and is the first to explore the compositions of RJ from different nectar plants. It will facilitate the development of therapeutic agents from RJ to treat difficult-to-heal wounds and the distinction of different RJ categories.
Assuntos
Ácidos Graxos , Proteoma/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Brassica napus/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Fagaceae/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Flores/química , Células HaCaT , Humanos , Camundongos , Modelos Biológicos , Proteoma/análise , Proteômica , Espectrometria de Massas em TandemRESUMO
BACKGROUND: Non-healing wounds have been a severe issue in the global healthcare system. Regrettably, royal jelly, a traditional remedy for various skin injuries, has not been widely applied in cutaneous wounds in clinical practice nowadays, which may be due to the confusion and the lack of knowledge about the efficacies of different types of royal jelly, the bioactive constituents, and the precise mechanisms underlying the wound repairing activity. Since the compositions and bioactivities of royal jelly are predominantly influenced by nectar plants, this study aims to explore the differences in the wound-healing properties of royal jelly produced by Apis mellifera L. during the blossom seasons of different floral sources, to provide guidelines for the future rational application of royal jelly in cutaneous wounds, and to promote the further discovery of wound repair-promoting substances. METHODS: Royal jelly samples were harvested during flowering seasons of Castanea mollissima Bl. (chestnut) and Brassica napus L. (rapeseed) in South China, from which hydrophilic and lipophilic fractions were extracted. The in vivo wound-healing potential was preliminarily assessed in Wistar rats' excisional full-thickness wounds, followed by investigating the mechanisms of action through in vitro assays with human epidermal keratinocytes and LPS-stimulated inflammation in macrophages. RESULTS: The results indicated that different royal jelly samples exhibited distinct wound-healing potential, in which Castanea mollissima Bl. royal jelly was more potent. It sped up wound closure between day 2 and day 4 to 0.25 cm2/day (p < 0.05), and could accelerate wound repair by enhancing the proliferative and migratory capabilities of keratinocytes by 50.9% (p < 0.001) and 14.9% (p < 0.001), modulating inflammation through inhibiting nitric oxide production by 46.2% (p < 0.001), and promoting cell growth through increasing the secretion of transforming growth factor-ß by 44.7% (p < 0.001). In contrast, Brassica napus L. royal jelly could regulate inflammation by reducing the amount of tumour necrosis factor-α by 21.3% (p < 0.001). CONCLUSIONS: The present study improves the application of royal jelly for curing difficult-to-heal wounds, in which the hydrosoluble extract of Castanea mollissima Bl. royal jelly promises the greatest potential. It also provides clues which may lead towards the identification of substances derived from royal jelly to treat wounds.